

The Heidelberg CSR:

Low-Energy Ion Beams in a Cryogenic Environment

Andreas Wolf Max-Planck Institute for Nuclear Physics, Heidelberg COOL05 Galena, Illinois, Sept. 21, 2005

High resolution merged beams experiments with molecular ions

CSR: Goals, layout, design status

Beyond CSR: Collision physics with low-energy antihydrogen beams

Dissociative recombination

Rotational resolution

HD+ (1s σ , v = 0, J) + e \rightarrow HD^{**} (1s σ n $l\lambda$, v'J') \rightarrow H + D

The CSR project

Accelerator physics with low-energy ion beams

Acceleration, short pulses, loss mechanisms ...
Diagnostic using sensitive cryogenic electronics (amplifiers, current probes, SQUID sensors ...)
Beam noise and stochastic cooling
Single-ion measurements ?

Layout of the Heidelberg CSR

CSR project team

Max-Planck-Institut für Kernphysik Heidelberg, Germany

- R. von Hahn
- M. Grieser
- D. Orlov
- H. Fadil
- T. Sieber
- A. Diehl
- A. Wolf
- C. Welsch
- V. Andrianarijaona
- J. Ullrich

C. D. Schröter InfraredresperingetsUrrutia at cryogenic ion trap H. Kreckel

Rovibrational laser diagnostic (prelim. studies) L. Lammich Weizmann Institute of Science Rehovot, Israel

M. Rappaport

Univ. Louvain-la-Neuve,

Belgium X. Urbain

Ion-atom merged beams

Kirchhoff Institute of Physics University of Heidelberg, Germany C. Enss Ion detectors A. Fleischmann

Technical University, Dresden, Germanyuack Cryogenic Ch. Haberstrohconsulting

Stored antiproton beams at keV energies

Summary

Low-energy ion beams in a cryogenic electrostatic storage ring (CSR)

Physics opportunities

- Rotationally controlled, high-resolution, low energy reaction studies
- Merged beams of electrons and atoms (meV resolution)
- Sensitive detection of electronic signals and infrared radiation
- Ultrahigh vacuum: long-time storage of highly charged ions
- Fixed target collisions with velocities around 1 a.u.
- Low-energy ion beam physics (cooling, diagnostic)

Experimental challenges

- Extreme vacuum requirements 2 K cryogenic cooling
- Low energy electron beams (eV range laboratory energy)
- Imaging and mass sensitive detectors
- Control and diagnostic of rotational cooling

High resolution electron target at TSR

Installation: Summer 2003

Cryogenic photocathode Energy distributions of photoelectrons "2D"-measurement Photocathode principle F⊥n ~ (E||, E^g_0_K Cs/O, deposition for 300 K $0.1 \, \pi \, \text{mm}$ negative agitudinal Energy, [meV] mrad Longitudinal Energy, [meV] cut \$emicondetectron_affinity E_c E_c Evac Diffusion Tunnel barrier Direct transmiss E_{vac} -300 conductance cattering 100 200300 100 200 300 0 0 band minimum vacuum level Transverse Energy, [meV] Transverse Energy, [meV] D. A. Orlov et al., Appl. Phys. Lett. Fully activated cathode 78, Quantum yield: 31% Space charge limited 90 K electron source Ь Thermalized e -: Extracted current reached: ~0.25 mA Laser power (800 nm) (10-16 hrs) for 1 mA: (mA currents may

haaama naadihla)

Cryogenic photocathode

Photocathode gun

Laser illumination up to 1 W

Temperature rise 15-20 K/ W at 90 K

U. Weigel et al., NIM A 536

Importance of low-energy electron-ion recombination

"Recombination phase" in cosmology

Interstellar plasma

- Photoionized interstellar gas
- Molecular clouds, star forming regions

Excited states for highly charged few-e systems

- Ground state Lamb shift in, e.g., U91+

Atoms from elementary particles: e+ p (antihydrogen) (e+e-, pp)

Stored antiproton beams at keV energies

Hydrogen-Antihydrogen collision experiments

Systems: \overline{H} on H, H2, He, ...

Collision energy regimes and dynamics:

Collision velocity matched to bound leptons e+e- formation dynamics – Lepton rearrangement

 $v \leq 1 a.u.$ EH $\leq 25 \text{ keV}$

Collision velocity matched to bound hadrons pp formation dynamics – Hadron rearrangement

v < 0.046 a.u. EH $\leq 54 eV$

