

5

Cryogenics for the MuCool Test Area (MTA)

C. Darve, B. Norris, L. Pei

Fermi National Accelerator Laboratory Batavia, IL, 60500, USA

COOL'05 – Galena, IL

Headlines

Scope

Helium Facility

Hydrogen Facility

Applications

- 1) Past: Convection LH₂ absorber
- 2) Present: SC Solenoid magnet
- 3) Future: Forced-flow LH₂ absorber, (Convection run 2)

The MTA is a Fermilab test facility constructed to support new developments in the physics and engineering of muon beam cooling MTA cryo-engineering requirements

- > Design, prototype and bench test cooling-channel components
- Provide helium and nitrogen refrigeration
- Provide liquid hydrogen

 Install equipment, instrumentation, DAQ & control in compliance with Fermilab safety policy (ES&H)

Previous US H₂ experiments : E158, SAMPLE, G0, Fermilab hydrogen experts

Important reference and guideline

FERMILAB: "Guidelines for the Design, Fabrication, Testing, Installation and Operation of LH₂ Targets – 20 May 1997" by Del Allspach et al. Fermilab RD_ESH_010– 20 May 1997

NASA: "SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation"

Applications

- LH₂ Absorbers:
 - Convection scheme (<100W?) MICE design
 - Forced-flow scheme (up to 300W) MuCool design
- S.C. solenoid magnet for RF cavity test (long term: LH₂ absorber)
- Other applications using HP gaseous hydrogen : Muon Inc.

Beam dump BEAM DIRECTION

Proposed cooling channel test bench

Ionization & Cryogenic Materials

Material	Z	A	$\langle Z/A \rangle$	Nuclear ^a collision length λ_T $\{g/cm^2\}$	$\begin{array}{l} \text{Nuclear} \ ^a \\ \text{interaction} \\ \text{length} \ \lambda_I \\ \{ \text{g/cm}^2 \} \end{array}$	$\frac{dE/dx _{\min}}{\left\{\frac{MeV}{g/cm^2}\right\}}$	^b Radiat {g/cm ²	ion length X_0 2 {cm}	c Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	$\begin{array}{c} \text{Refractive} \\ \text{index } n \\ ((n-1) \times 10^6 \\ \text{for gas}) \end{array}$
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	61.28 d	(731000)	(0.0838)[0.0899]		[189.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28 ^d	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128[138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		_
C	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 #		
N ₂	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8078[1.250]	77.36	1.205 [298]
0 ₂	8	15,9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204/0.90051	27.09	1.092 [67.1]
AL	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70	-126-13	

.....

Ionization coolin

" 3ethe-Bloch multiple scatterin

Cryogenic Properties of Various Gasses

M. Green: "Hydrogen Safety Issues compared to Safety Issues with Methane and Propane", CEC'05 Parameter He N₂ H₂ CH₄ C₃H₈

1 al allicici		1.12	2	011 4	0 3 8
Triple point temperature T _t (K)	2.177^	63.15	13.81*	90.69	91.46
Heat of fusion @ $T_t (J g^{-1})$	-NA-	25.3	59.5*	58.41	79.9 7
Boiling temp. T b @ 1 bar (K)	4.222	77.35	20.28*	111.67	230.46
$\label{eq:liquid} Liquid \ density \qquad \rho_{\scriptscriptstyle 1} \ @ \ T_{\scriptscriptstyle b} \ (kg \ m^{-3})$	124.9	807	70.8*	422.4	585.3
Gas density $\rho_g @ T_b (kg m^{-3})$	16.89	4.622	1.339*	1.816	2.497
Gas to liquid volume ratio at T b	7.395	175.6	52.87*	232.6	298.0
Gas V 293 to Liquid V Ratio	699.4	645.6	792.9	591.4	379.0
Gas C $_{\rm p}$ @ T $_{\rm b}$ (J g $^{-1}$ K $^{-1}$)	9.144	1.341	12.24*	2.218	1.642
Heat of vaporization @ T $_{b}$ (J g $^{-1}$)	20.7	198.8	445*	510.8	424.8
Heat flux for $\Delta T=300$ -T _b (kWm ⁻²)	~200	~27	~93	~47	-NA-
Broken vacuum heat flux (kWm ⁻²)	~35	~1.6	~19	~0.31	-NA-
Critical temperature $T_{c}(K)$	5.195	126.2	32.98	190.6	368.8
Critical pressure P _c (MPa)	0.228	3.39	1.29	4.59	4.36

^ The lambda point temperature for helium. For helium liquid, gas, and solid can't coexist.
* This data is for para hydrogen. Ortho hydrogen changes to para hydrogen at < 100 K.

CEC 30 August 2005

Ionization & Cryogenic Materials

Properties of gaseous (normal) hydrogen are as follows:

Reference temperature	68°F	527.7° R	293.1° K
Standard pressure (1 atm) psia	14.69 kPa	101.325 abs	
Density (at 527.7° R & 1 atm)	.00523 lb/ft ³	83.7 g/m ³	5.52
Specific Volume (at 527.7° R & 1 atm)	191.4 ft ³ /lb	0.0119 m ³ /g	
Specific Heat	Cp= 3.425 Btu/lb-R Cv= 2.419 Btu/lb-R	Cp= 14.33 J/g-k Cv= 10.12 J/g-k	
Velocity of Sound	4246 ft/sec	1294 m/sec	
Heat of Combustion	Low = 51596 Btu/lb High = 61031Btu/lb	Low= 119.93 kJ/g High= 141.86 kJ/g	
Flammability limits Hydrogen-air mixture Hydrogen-oxygen mixture	Lower= 4.0 % volume Lower= 4.0 % volume	Upper= 75 % volume Upper= 95 % volume	
Explosive limits Hydrogen-air mixture Hydrogen-oxygen mixture	Lower= 18.3 % volume Lower= 15.0 % volume	Upper= 59 % volume Upper= 90 % volume	
Minimum spark ignition energy at 1 atm			
In air	1.9 x 10 ⁻⁸ Btu	0.02 mJ	
In Oxygen	6.6 x 10 ⁻⁹ Btu	0.007 mJ	5.87

Parameter	\mathbf{H}_{2}	CH_4	C ₃ H ₈
Flammability limits in air (%)	4.0 - 74.2	5.0 - 15.0	2.1 – 9.4
Ignition temperature in air (K)	~855	~925	~770
Ignition energy @ STP (J/cc)	~0.74	~0.97	~0.76
Stoichiometric flame temperature in air (K)	~2580	~2340	~2390
Heat of combustion (kJ g ⁻¹)	135.4	52.8	40.3
Liquid heat of combustion (MJ per liter)	9.59	22.29	23.56
Gas heat of combustion (MJ m ⁻³ @ STP)	12.09	37.70	93.48
Temp when gas is heavier than RT air (K)	~21	~162	~444

Source: NASA, Glenn Research Center Safety Manual

5

Cryogenic Systems for MTA Solenoid Magnet

Jryogenic Department

5

Tevatron-style Satellite Refrigerator

Installation of 300 KW Screw Compressors

Oil vapor contamination from helium gas is further removed through the outdoors purification skid

Coalescers

Refrigeration Modes

The MTA Process and Control System

Functions and Mandates:

- Monitor and control operations Reliability
- ✓ Activate alarms for out-of-limits and hazardous conditions Reliability
- ✓ Collect data for performance studies (complementary to users DAQ) Accuracy

Safety equipment:

- Flammable gas detectors
- -ODH detectors
- FIRUS system
- Building ventilation
- Flow switch

- Audio and visual alarms
- Crash buttons
- Annunciators
- Interlocks

Siemens-Moore QUADLOG[™]

→ Combines the beneficial features of a PLC (modularity, ladder logic and sequential programming, high-speed logic solving, and industrial strength) with high safety, high availability, and extensive diagnostics

→ QUADLOGTM incorporates continuous PID control, analog I/O and a variety of operator interface options not typically available from a PLC

Integrated safety features for a fail-safe PLC

- Fault tolerance
- Self-testing software

 Decreased start-up time and minimized downtime with online diagnostics and detailed error reporting

 Easier integration with other control systems via open communications

Monitoring and automated response to pre-defined scenarios

PLC Modules

SAM: Standard Analog Module

Pressure Transducers Heater Electro-valve

SDM: Standard Discrete Module

EV, Pump, ODH, FIRUS LH_2 absorber liquid level too low H_2 presence in the absorber status Purge cabinet status Audio system status Emergency answer status (SD progress) FIRUS (ODH and H_2) Interlocks status

CDM: Critical Discrete Module

Oxygen Deficiency Hazard (x4) Flammable gas detectors (x3) He cool-down start status System stop status System reset status

VIM: Voltage Input Module

Level, Pressure, Flow, Temp. (Pt-co)

RTM: Resistance Temperature Module

Platinum and carbon temperature sensors

Cryogenic Department

Modified Tevatron Cryogenic Control

Mandates from Fermilab and Engineering Solutions

- 1) Need QUADLOG® Safety PLC for monitoring and automated response to predefined scenarios (hydrogen leak, vacuum rise, person entering interlocked room)
- 2) Establish a large set of procedural controls and written operating procedures
- 3) Meet NEC standards for Class I, Div 2, Group B, (Class I = hazard; Div 2 = hazard sometimes present;Group B = hydrogen)
- Establish nitrogen purge box to meet NEC standards; contained ignition sources not meeting code
- 5) Build intrinsically safe barriers
- 6) All cabling using MC type or PLTC cable
- Used H₂ gas detectors located in the experimental hall and in the gas manifold room for automated response
- 8) Use Excess flow valve on hydrogen gas fill line

9) Provide 'secondary containment' and use buffer tank on vacuum volume10)Limit the MAWP of hydrogen vessel to 0.16 MPa

Note: Equipment @ Refrigerator: conventional Tevatron devices → DirectLogic PLC

5

Application 1: KEK convection-type LH₂ Absorber Process and Instrumentation

Application 1: KEK convection-type LH₂ Absorber Process and Instrumentation

*

Application 1: KEK convection-type LH₂ Absorber Installation and Results

Application 1: KEK convection-type LH₂ Absorber Installation and Results

An upgrade would be needed to better quantify LH2 absorber performance with longer term tests under stable cooling conditions

- More heat deposed
- → Shorten transfer line to optimize helium usage/reduce heat load
- HTC improperly measured

→Immersed helium temperature sensors; remove warm helium heater and use electrical heater (KEK design: sheathed cartridge inserted in finned aluminum exchanger; temperature monitoring for auto-ignition concerns)

- Improve instrumentation
- \rightarrow Cernox thermometry, use liquid level probe for LH₂ bath

Ref: CEC'05 paper - A. Bross et. al, "An upgrade for the MuCool Test Area", submitted to Cryogenic Engineering Conference 2005, CEC'05

Application 2: Superconducting Solenoid Magnet Process and Instrumentation

Application 2: Superconducting Solenoid Magnet Installation and commissioning

System was moved from another Fermilab area

- + New PLC for LHe and LN₂ transfers
- + Modified cool-down procedure
- + Internet Rack Monitor (IRM) is used as a gateway from PLC to ACNET

Application 3: Forced-flow LH₂ absorber Process and Instrumentation Proposal

Safety issue:

25 liters of LH₂ released into the air and ignited with only a 10 % yield the energy equivalent to 4 kg of TNT

	Total heat load estimation				
Heat load	(W)	80 K	17 K		
Mechanical Sup	oports	67	6		
Superinsulation		1.5	0.2		
Cryostat windo	NS	-	17		
LH2 pump		-			
Total		68.5	73.2		

vs. 500 W for total refrigeration system

*

Application 3: Forced-flow LH₂ Absorber 3-D Conceptual Design

LH₂ loop and vacuum vessel

- -Structural study
- -Thermal study
- Hydraulic study (in collaboration with Oxford Univ.)

-Safety Review Documents

Reference papers:

C. Darve et al., "The Liquid Hydrogen System for the MuCool Test Area", CEC'03, 2003

C. Darve et al., "Cryogenic Design for a Liquid Hydrogen Absorber System", ICEC19, 2002

•

Concluding comments

On-going cryogenic efforts at MTA

Hydrogen facility was successfully designed, built and commissioned at Fermilab

> Helium facility (compressor, refrigerator and transfer line) is under fabrication to complete the final infrastructure

Temporary infrastructure has permitted to test the LH₂ convection absorber in summer 2004

> SC solenoid magnet cooling system is installed

 \succ Forced-flow LH₂ absorber design must be completed

MTA "deliverables" shall prove the feasibility of ionization cooling but also the practicality of cryogenic cooling in hazardous environment

→MTA = Fermilab facility fully equipped with cryogenic capacity (Hydrogen and Helium)