New Ideas for 6 D Ionization Cooling

- Muon Collider requirements
- Transverse Ionization Cooling Theory
- How to get low beta
 - -**Solenoids**
 - Focusing Lattices
 - -Li Lenses
- Longitudinal Emittance Cooling
- Concept of complete system
- Conclusion

Why a Muon Collider

- Muons are point like, similar to electrons
- Can probe the same physics, and some more
- But have 40,000 less radiation
- So Muon Colliders can be much smaller than Linear Colliders

3 TeV Collider requirements

• Luminosity limited independent of emittance:

$$\mathcal{L} \propto n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^2}{\sigma_{\perp}^2} \qquad \Delta \nu \propto \frac{N_{\mu}}{\epsilon_{\perp}}$$

 $\mathcal{L} \propto B_{\text{ring}} P_{\text{beam}} \Delta \nu \frac{1}{\beta_{\perp}}$

• Higher $\mathcal{L}/P_{\mathrm{beam}}$ requires lower β_{\perp} or correction of $\Delta \nu$

• But required emittance still small

$$\epsilon_{\perp} \propto \frac{N_{\mu}}{\Delta \nu}$$

For the record

$$\mathcal{L} = n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^{2}}{2\pi\sigma_{1}\sigma_{2}}$$
$$\Delta \nu_{i} = \left(\frac{r_{o}}{2\pi}\right) \left(\frac{N_{\mu}}{\gamma}\right) \left(\frac{\beta_{i}}{\sigma_{i}(\sigma_{1}+\sigma_{2})}\right) \qquad \text{see}^{1}$$
$$n_{\text{turns}} = \int_{o}^{\infty} \left(e^{\frac{2\pi rn}{\gamma\tau_{\mu}}}\right)^{2} dn = \frac{\gamma \tau_{\mu}c}{4\pi r}$$
$$r = \frac{p}{\langle B \rangle} = \frac{(m_{\mu}c^{2})\gamma}{Bc}$$

if $\sigma_1 = \sigma_2$ then:

$$\mathcal{L} = \left(\frac{\tau_{\mu} c^2}{4 \pi (mc^2)^2 r_o}\right) < B_{\text{ring}} > P_{\text{beam}} \frac{2 \Delta \nu}{\beta_{\perp}}$$
$$\epsilon_{\perp} \propto \frac{N_{\mu}}{\Delta \nu}$$

For $\sigma_2 \ll \sigma_1$ then

$$\mathcal{L} = \left(\frac{\tau_{\mu} c^2}{4 \pi (mc^2)^2 r_o}\right) < B_{\text{ring}} > P_{\text{beam}} \frac{\Delta \nu_2}{\beta_2}$$

which is 1/2 that for $\sigma_1 = \sigma_2$

¹e.g. Accelerator physics, S.Y.Lee, p387

Snowmass 98 Assumed

Average bending field	Т	5.2
Tune Shift (from e rings)		0.044
Luminosity	$10^{33} cm^{-2}$	70

	\mathbf{E}_{cm}	\mathbf{N}_{μ}	f	\mathbf{P}_{μ}	$\beta_{\perp} = \sigma_z$	dp/p	\mathbf{emit}_{\perp}	$\mathbf{emit}_{\parallel}$	ϵ_6
	TeV	10^{12}	\mathbf{Hz}	$\mathbf{M}\mathbf{W}$	$\mathbf{m}\mathbf{m}$	%	π mm	π mm	$(\pi \text{ mm})^3$
Required	3	2	30	28	3	0.16	.05	72	170
Initial							20	2000	10^{9}
Factor							400	30	6 10^6

Required Cooling 6 D by 1/6,000,000

Transverse Cooling

Rate of Cooling without scattering

$$\frac{d\epsilon}{\epsilon_{x,y}} = \frac{dp}{p} \quad J_{x,y}$$

For the moment the "partition functions" Explanation later

$$J_{x,y} = 1$$

Minimum (Equilibrium) Emittance

$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{\beta_v J_{x,y}} C(mat, E)$$
$$J_{x,y} = 1 \qquad C(mat, E) \propto \frac{1}{L_R d\gamma/ds}$$

At minimum of dE/dx ($\approx 300 \text{ MeV/c}$)

material	density	dE/dx	\mathbf{L}_R	\mathbf{C}_{o}	\mathbf{A}_{o}
	kg/m^3	MeV/m	m	%	%
Liquid H2	71	28.7	8.65	0.38	1.36
Li	530	87.5	1.55	0.69	1.31
Be	1850	295	0.353	0.89	1.28
\mathbf{C}	2260	394	0.47	1.58	1.25
Al	2700	436	0.089	2.48	1.23

- Hydrogen much the best material
- \bullet Coefficient \mathbf{A}_o is for longitudinal cooling explanation to come

Choice of Momentum

At lower Momentum,

- Easier to get low betas
- $\bullet dE/dx$ greater, so C is smaller
- \bullet But low E losses more than high E \rightarrow increased dE/E

How to get low beta (strong focus) ?

• Strong Solenoid

 $-\,\mathrm{HTS}$ superconductors now allow, for small bore, Maximum field pprox 20 T

• At Simple Multiple foci (Focus-Focus, or FOFO)

- -Lower beta for same IB
- But for narrow dp/p

• Bi-Periodic Lattices (Andy Sessler)

SFOFO used in Study 2 and Cooling Experiment Muon Ionization Cooling Experiment MICE

- -International Collaboration: (US, Europe, Japan)
- Proposal Approved at RAL
- -Funding for phase I NSF (NSF, DOE, Europe, Japan)

LFOFO (For Lowest betas) HTS (BSCCO) superconductors now allow field = 20 T

- For final cooling
- -Short cells
- -Beta below 0.7 cm at 70 MeV/c

One Cell of 20T LFOFO Cooling Lattice

• Lithium Lens

– For uniform i then perfect lens

$$I \propto r^2$$
 Bending $\propto B \propto I/r \propto r$

 $- \begin{array}{ll} Maximum \ current \ limited \ by \ breaking \ containment \ tube \\ - \begin{array}{ll} Pressure \propto \ Surface \ Field \\ \end{array} \begin{array}{ll} Current \ lenses \ 10 \ T \end{array}$

Equilibrium Transverse emittances vs Energy

- Both Li Lens and LFOFO achieve req. at low energies
- But longitudinal emittance will be rising fast

• Ok If we know how to reduce it first

Work in Progress

- Final Li Lens successfully simulated
- Including matching in and out
- But engineering of lens not demonstrated
- \bullet 20T LFOFO appears to achieve required emittance
- \bullet Momentum acceptance limited to \pm 9 %
- Not yet simulated

Longitudinal Cooling: Emittance Exchange

- \bullet dp/p (and Longitudinal emittance) reduced
- But σ_y (and transverse emittance) increased
- Transverse cooling from mean loss in absorber \rightarrow "Emittance Exchange"
- J's are modified, but Jx + Jy + Jz = constant
- "Emittance Exchange" + Transverse Cooling = 6 D cooling

Minimum (equilibrium) dp/p If equal cooling in 3 dimensions:

- \bullet Minimum at 2.5% around 200 MeV/c
- Encouraging for the above LFOFO acceptances $\approx 9\%$

e.g. 6 D cooling in "RFOFO" Ring with Wedges

- Bending gives dispersion
- Wedge absorbers give cooling also in longitudinal
- Many turns in ring gives more cooling at lower cost
- But Injection/extraction Hard

Injection/Extraction Vertical Kicker
Alternating 3T Solenoids Tilted for Bending B_y
201 MHz rf 12 MV/m
Hydrogen Absorbers

- Could be converted to Helix
- Avoids injection/extraction
- Better performance by tapering
- But more expensive

Performance of RFOFO Ring

- Final Long Emittance 2400 (pi mm mrad)
- Less that (7200 pi mm mrad) Required for Collider

Plausible Solution to Collider Requirements

Trans emittance (mm mrad)

Simulations Done

- Initial Phase Rotation and Bunching
- Most of Initial RFOFO Helix
- All Li Lenses
- Match from last Lens (the hardest)

Work needed on

- Bunch Combiner
- Low beta cooling rings
- Matching in and out of all Li Lenses
- Version using LFOFO instead of Li Lenses

Conclusion

- 1. RFOFO Rings/helices with wedges (emittance exchange) can lower longitudinal emittance below requirement
- 2. Li lenses and/or LFOFO Lattices can achieve trans. req. but only at low momenta where Long emittance is growing (reverse emittance exchange)

By using 1) first, and then 2), all requirements appear attainable

- Much more Study is needed
- There are many other problems
- But there is reason to hope the problem is soluable