Cooling Scenario for the HESR

H. Stockhorst Forschungszentrum Jülich GmbH

COOL 05, Eagle Ridge, Galena, IL USA September 18th to 23th, 2005

- HESR Layout
- Electron Cooling at Momenta p ≤ 8.9 GeV/c for the High Resolution Mode
- Small Angle and Energy Scattering
- Stochastic Cooling with Internal Target
 - for $p \ge 3.9$ GeV/c in the High Luminosity Mode

12.09.2005

HESR Layout

Basic Parameters:

- Circumference: 574 m
- Arc Length: 155 m
- Straight Section: 132 m

• Ions:

- anti-protons
- protons
- Momentum Range:
 1.5 GeV/c 15 GeV/c
- anti-proton injection
 - at 3.9 GeV/c from RESR

Scenario High Resolution Mode

Luminosity L = $2 \cdot 10^{31}$ cm⁻² s⁻¹

Number of Anti-Protons N = 10^{10}

Target Area Density $N_T = 4 \cdot 10^{15}$ atoms/cm²

rms-relative momentum spread ≈ 1 × 10⁻⁵ required up to 8,9 GeV/c The beam is injected into HESR at T = 3 GeV

- Electron Pre-Cooling
- Acceleration to the Desired Energy
- Electron Cooling and Target ON

12.09.2005

Cooling Models Simulation with BETACOOL

Electron Cooling

- Model Beam Option
- Semi Empirical Formula by V.V. Parkhomchuk

Stochastic Cooling

- rms-Beam Option
- Transverse Cooling: Model by B. Autin
- Longitudinal Filter Cooling:
 - T. Katayama and
 - N. Tokuda (and H.St.)

• HESR Lattice with $\gamma_{tr} = 6.5i$

• Intra Beam Scattering (IBS): Martini Model

Electron Cooler Parameters

Beta function at cooler (H/V):	100	m
Cooling section length:	30	m
Electron beam radius:	5	mm
Electron beam current:	1	А
Electron beam density:	2.7×10^8	cm ⁻³
Magnetic field in cooler:	0.2	Т
Field homogeneity:	1 ×10 ⁻⁵	
Transverse electron temperature:	0.1	eV

Electron Cooling at T = 3 GeV

Number of antiprotons:	10^{10}	
Initial rms emittance (H/V):	0.092	mm mrad
Initial rms relative momentum spread:	1.5 ×10 ⁻⁴	
rms-beam radius at cooler:	3	mm
Revolution frequency:	507.25	kHz
Kinematic beta:	0.97	
Kinematic gamma:	4.197	
Frequency slip factor:	0.08	
Luminosity:	2×10^{31}	$cm^{-2} s^{-1}$

- The equilibrium is determined by IBS
- The target is switched on at about 22 s. No influence

• Final relative rms-momentum spread: 3.4 × 10⁻⁵ 12.09.2005 H. Stockhorst 6

Time Evolution of the Momentum Distribution @ 3 GeV

t = 1 s

-3

-2

2.5

2

1.5

1

0.5

0

-4

Number Longitudinal [%]

beam distribution

- Initially: dense core and long tails
- At equilibrium: Gaussian distribution

12.09.2005

Electron Cooling at 8 GeV

Number of antiprotons:	10 ¹⁰	
Initial rms emittance (H):	0.000861	mm mrad
Initial rms emittance (V):	0.000258	mm mrad
Initial rms relative momentum spread:	2.28 ×10 ⁻⁵	
Rms-beam radius at cooler (H):	0.3	mm
Rms-beam radius at cooler (V):	0.2	mm
Revolution frequency:	519.40	kHz
Kinematic beta:	0.994	
Kinematic gamma:	9.526	
Frequency slip factor:	0.035	
Luminosity:	2×10^{31}	$cm^{-2} s^{-1}$

- Electron cooling and target ON
- Equilibrium dominated by IBS

• rms-momentum spread with target and IBS : 3.0 × 10⁻⁵

12.09.2005

Resume

In the HESR Synchrotron Mode:

 The High Resolution Mode with δ_{rms} ~ 3.0 × 10⁻⁵ up to T ~ 8 GeV seems possible with electron cooling.

But

No phase space distortion during acceleration has been assumed.

9

• No phase space increase during injection 12.09.2005 H. Stockhorst

Scenario High Luminosity Mode

Luminosity L = $2 \cdot 10^{32}$ cm⁻² s⁻¹

Number of Anti-Protons N = 10^{11}

Target Area Density $N_T = 4 \cdot 10^{15}$ atoms/cm²

Reflected and the injudged an alternative
 Acceleration to the desired momentum
 Stochastic Cooling
 to compensate target-beam heating

Small Angle and Energy Loss Straggling

for the High Luminosity Mode

F. Hinterberger, INTAS Workshop, 3.6.05, GSI

• Introduce scrapers to limit the maximum relative momentum deviation by $\delta_{Cut} = 10^{-3}$ will decrease the squared rms deviation per target traversal by more than one magnitude above T = 8 GeV.

• The nebative particle loss rate is less to than 15 %/h above T = 8 GeV.

Small Angle and Energy Loss Straggling

$$\left(\frac{d\varepsilon}{dt}\right)_{T} = \frac{f_{0}}{2}\beta_{T}\theta_{rms,loss}^{2}$$

small angle scattering is less important above T = 8 GeV.

the maximum emittance increase is about a factor of two over one hour at T = 8 GeV.

• Dominant process: Increase in momentum spread above 8 GeV

$$\left(\frac{d\delta_{rms}^2}{dt}\right)_T = f_0 \delta_{rms,loss}^2$$
 (DC-beam)

12.09.2005

Scenario High Luminosity Mode

 Transverse stochastic cooling seems to be only necessary below 8.9 GeV/c.

 Longitudinal stochastic cooling is necessary in the whole range.

Longitudinal Equilibrium with Stochastic Cooling and Target

Longitudinal filter cooling for a Gaussian distribution obeys the differential equation

$$\frac{d\delta_{rms}^{2}}{dt} = -\frac{2}{\tau}\delta_{rms}^{2} + \frac{3}{4\sqrt{\pi}}B \cdot N \cdot \delta_{rms} + \left(\frac{d\delta_{rms}^{2}}{dt}\right)_{T}$$

Schottky noise heating
$$\left(\frac{d\delta_{rms}^{2}}{t}\right) = f_{0}\delta_{rms,loss}^{2}$$

N: particle number, n_P, n_K : number of PU, KI loops, W: bandwidth, f_C: center frequency, G_A: electronic gain, $2/\tau$: cooling rate 12.09.2005 H. Stockhorst

at

Longitudinal Equilibrium with Stochastic Cooling and Target

equilibrium relative rms-momentum spread:

$$\delta_{rms,EQ} = \frac{3}{16\sqrt{\pi}} B \times N \times \tau + \frac{1}{2} \sqrt{\left(\frac{3}{16\sqrt{\pi}} B \times N \times \tau\right)^2 + 2\tau \times \left(\frac{d\delta_{rms}^2}{dt}\right)}$$

with contribution from

Schottky noise equilibrium:

$$\delta_{rms,S} \propto B \cdot N \cdot \tau \propto N \cdot \sqrt{n_p n_K} G_A$$

Target equilibrium:

$$\delta_{rms,T} \propto \tau \propto \frac{1}{Wf_C} \cdot \frac{1}{\sqrt{n_P n_K} G_A}$$

N: particle number, n_P, n_K : number of PU, KI loops, W: bandwidth, f_C : center frequency, G_A : electronic gain, $2/\tau$: cooling rate 12.09.2005 H. Stockhorst

Longitudinal Equilibrium with Stochastic Cooling and Target

- For a given bandwidth W and center frequency f_c of the cooling system as well as particle number N the minimal equilibrium value is attained for a certain value of the product $(n_F n_K)^{1/2} G_A$.
- The number of pickup loops n_p , the number of kicker loops n_K and the electronic gain G_A can be chosen to optimize the signal-to-noise ratio at the pickup output and to keep the electronic power in reasonable limits.
- The only way to reduce the equilibrium value (and cooling down time) for a given particle number N is to increase the bandwith W and the center frequency f_c.

(2–4) GHz System

- Quarter wave loop pairs for pickup and kicker: #64
- Electrode length and width: 2.5 cm
- Gap height: 2.6 cm
- Pickup/kicker length $\approx 3 \text{ m}$
- Beta function at pickup and kicker: 75 m
- Impedance: 50 Ohms
- Cooled structures and eg. amplifien temperature (both 80 K) Congitudinal cooling: Optical notich filter
 Transverse cooling: Pickup/kicker in difference mode
 Low electronic power < 200 W

Below T = 3 GeV longitudinal band overlap

Longitudinal Stochastic Cooling Performance for Different Momenta in the HL mode

Transverse and Longitudinal Cooling

Including IBS+Target

p = 3.9 GeV/c

 $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

N = 10¹¹

$$N_T = 4 \cdot 10^{15} \text{ atoms/cm}^2$$

Longitudinal Stochastic Cooling Performance for Different Momenta in the HL mode

L = $2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ N = 10^{11} N_T = $4 \cdot 10^{15} \text{ atoms/cm}^2$

		3.9 GeV/c	8.9 GeV/c	14.9 GeV/c
δ _{Cut} = ∞	$\delta_{rms,Ini} \times 10^4$:	3.8	2.5	1.8
	$\delta_{rms,eq} \times 10^4$:	1.3	1.6	1.8
	t_{eq} [s]:	≈ 150	≈ <u>1</u> 50	-
	$\sqrt{n_{_P}n_{_K}}G_{_A}$:	0.64×10^7	2.0×10^{7}	3.6×10^7
	dB:	136	146	151
$\frac{\delta_{Cut}}{2 \times 10^{-3}}$	$\delta_{rms,eq} \times 10^4$:	1.0	0.94	0.9
	t _{eq} [s]:	≈ 250	≈ 400	≈ 500
	$\sqrt{n_P n_K} G_A$:	0.36×10^7	0.9×10^{7}	1×10^{7}
	dB:	131	139	140

above 8.9 GeV/c only longitudinal cooling

 $dB = 20Log_{10}(\sqrt{n_P n_K}G_A)$

Stochastic Cooling Performance for Different Momenta

 For all energies above T = 3 GeV almost the same equilibrium relative momentum spread values are attained.

Target heating can be compensated.

- As compared to electron cooling: IBS plays (almost) no role if the beam is only longitudinally cooled.
- If the momentum aperture is limited to $\delta_{Cut} = 2 \cdot 10^{-3}$ the rms relative momentum spread can be cooled down by more than a factor of two.

Thank You for Your Attention

References

- D. Möhl et al., Phys. Rep. Vol. 58, No.2, Feb. 1980
- Design Report Tevatron 1 Project, Sept. 1984, FNAL
- B. Autin, IEEE Transactions on Nucl. Science, Vol. NS-30, p. 2
- B. Autin, "Fast Betatron Cooling in an Antiproton Accumulator", CERN/PS-AA/82-20
- F. Hinterberger and D. Prasuhn, Nucl. Instr. and Meth. A279(1989)413
- T. Katayama and N. Tokuda, Part. Acc., 1987, Vol. 21 according to a private communication with Tokuda the noise contributions have been recalculated by H.St.
- A.Smirnov, A.Sidorin, G.Trubnikov, JINR, Description of software for BETACOOL program based on BOLIDE interface

12.09.2005