Stochastic Cooling Developments at GSI

F. Nolden Cool05 Galena, IL September 20, 2005

Authors

GSI

- K.Beckert
- P.Beller
- A.Dolinskii
- B.Franzke
- U. Jandewerth
- I.Nesmiyan
- F. Nolden
- C.Peschke
- P. Petri
- M. Steck

CERN

- F. Caspers D. Möhl
- L. Thorndahl

The Small Storage Rings

CR Beam Parameters

RI Beam Parameters

Injection energy [Me	740	
Transverse emittance	200/0.5	
Momentum spread at	±1.5×10 ⁻² /±5×10 ⁻⁴	
Cooling time constan	0.2	
Number of antiprotor	<1×10 ⁹	
	pbar Beam Parameters	
Injection energy [Ge	3	
Transverse emittance	240/5	

1×10⁸

Momentum spread at injection/extraction $\pm 3 \times 10^{-2} / \pm 1 \times 10^{-3}$ Cooling time constant [s]1

Number of antiprotons

CR: Collector Ring Stochastic Cooling

Stochastic Cooling Slip Factor

F. Nolden, Cool05, September 20, 2005

CR pbar and RI Optics

Rare Isotope Beam Stochastic Cooling

Cooling Rate is limited due to:

- 2. Undesired Mixing:
 - The various η 's cannot be decreased further.
 - That would increase *D(s)* in the dipoles too much,
 - making the magnets unaffordable.
- 3. Less than optimum beam parameters at Palmer pu
 - $\sqrt{\beta_x} E_x$ is comparable to $D \delta p/p$ (mutual diffusive heating)
 - $\sqrt{\beta_y} E_y$ is equally large (low signal, but high charge state)
 - Less than optimum situation, make the best of it, use all three

Rare Isotope Cooling

Parameters for 740 MeV/u (γ =1.79) at $\delta p/p$ = 0.4 %

	total	P3-K1	PP-K1	PP-K3
			(hor.)	(vert.)
α_{p}	0.1318	0.181	0.193	0.164
γ_t	2.754	2.352	2.279	2.471
η	0.1787	0.130	0.118	0.147
T _{p-k} [ns]	845	308	180	212
Freqency limit [GHz]		1.56	2.94	2.01

F. Nolden, Cool05, September 20, 2005

Antiproton Stochastic Cooling

- Cooling rate is less than optimum due to limited signal to noise
- Ring is operated at $\eta = -0.017$, close to optimum

Stochastic Cooling Electrode Development

Layout of the RESR Lattice

Classical Stochastic Cooling Accumulator Scheme

- Exponentially rising particle density from tail to core
- Exponentially falling gain profile from tail to core
- Constant particle flux
 everywhere

(adapted from D. McGinnis)

RESR Beam Envelopes and Dispersion Function

RESR Antiproton Beam Parameters

Energy [GeV]	3
Accumulation rate [pbar/h]	7×10 ⁻¹⁰
Accumulation time [h]	0.5 - 2
Transverse emittance after deceleration [mm mrad]	5 – 13
Momentum spread after deceleration	±1 - 2.6×10 ⁻³

Outlook

CR

- Lattice and ion optics close to settled
- Stochastic cooling scheme is defined
- Tank design is worked on, electrode type is decided
- Superferric magnet design is most probable

RESR

- Different accumulation schemes are worked on
- Stochastic cooling electrode design has started

