Commissioning of HIRFL-CSR and its Electron Coolers

Institute of Modern Physics Chinese Academy Of Sciences

Xiaodong Yang

September 22 2005

Function of Cooler in HIRFL-CSR Main Ring Experimental Ring

Heavy Ion Beam Accumulation

High Precision High Resolution

Physics Program of CSR

RIB physics (With Radioactive Ion Beams)

Researches of hot nuclei (With high-energy beams)

Atomic physics (With highly charged heavy ions)

Related applications

	CSRm	CSRe]				
Circumference (m)	161.0014	128.8011	-				
Average radius (m)	8R _{SSC} =34R _{SFC} =25.62416	4/5R _{CSRm} =20.499328	-				
Geometry	Race-track	Race-track					
Max. energy (MeV/u)	2800 (p) 1100 (C ⁶⁺) 500 (U ⁷²⁺)	2000 (p) 750 (C ⁶⁺) 500 (U ⁹²⁺)	CSR major parameters				
Βρ (Tm)	0.81/12.05	0.50/9.40					
B(T)	0.10/ <mark>1.60</mark>	0.08/ <mark>1.60</mark>					
Ramping rate (T/s)	0.05 ~ 0.4	-0.1 ~ -0.2		CSRm	CSRe		
			E-cooler				
Repeating circle (s)	~17 (~10s for Accumu	lation)	Electron energy (KeV)	35	300		
Acceptance	Fast-extraction mode	Normal mode	Eff. cooling length (m)	3.4	3.4		
A_h (π mm-mrad)	200 (Δp/p = ±0.3 %)	150 (Δp/p =±0.5%)	RF system	Accel. Accum.	Deceleration		
A_v (π mm-mrad)	40	75	Harmonic number	1 16, 32,64	1		
Δp/p (%)	1.4	2.6 ($a = 10 = mm mrad$)	f _{min} /f _{max} (MHz)	0.24/1.81 6.0 / 14.	0 0.4 / 2.0		
	(ε _h – ου π mm-mrad)	(ε _h – το π mm - mrad)	Voltages (n × kV)	1 × 7.0 1 × 20.0	2 × 10.0		

Vacuum (mbar)

(3.0 × 10⁻¹¹)

Main	Parameters	Table	of HIRFL	L-CSR

		CSRm	CSRe
Ion Energy/MeV/u		8-50	10-450
Electron Energy/ke	V	4.39-27.43	5.5-247.87
Ring Length/m		161.0	128.8
Cooling section Len	gth/m	4.0	4.0
βFunction/m	Horizontal β_h	10.0	12.5
	Vertical β_h	17.0	16.0
Dispersion/m		0	0
Magnetic Strenghth/T		<0.15	< 0.15
Max Electron Current/A		3	3
Initial Emittance	Horizontal ϵ_h	150	30
(πmmmrad)	Vertical ϵ_v	20	30
Initial Momentum S	pread $\Delta P/P$	±5×10-3	±5×10-3
Final Emittance	Horizontal E _h	20	1
(πmmmrad)	Vertical ε_v	20	1
Final Momentum Spread ΔP/P		±5×10-4	±1×10-6

Some topics discussed

- Collection of electron beam
- Adiabatic expansion of electron beam
- Influence of magnetic field imperfection
- Motion of electron beam in toroid

Parameters related to the cooling time ---lattice function

- βFunction
- Dispersion
- Initial Emittance and Momentum Spread

Parameters related to cooling time ---Ion beam

- Ion Energy
- Species of Ion
- Charge State
- Ion Beam Current

Parameters related to Cooling Time ---Electron Beam

- Density of Electron
- Electron Beam Current
- Radius of Electron Beam
- Transverse Temperature of Electron Beam

Parameters related to Cooling Time ---Electron cooling Device

- Effective Cooling Length
- Magnetic Field Strength
- Parallelism of Magnetic Field in Cooling section

Cooling time as a function of Betatron function

Cooling time as a function of dispersion in the cooler location

Cooling time as a function of initial emittance

Cooling time as a function of initial momentum spread

Cooling time as a function of ion energy

Cooling time as a function of charge state

Cooling time as a function of injection ion beam current

Cooling time as a function of electron density at different radius

Cooling time as a function of electron beam current at fixed radius

Cooling time as a function of radius of electron beam at fixed density

Cooling time as a function of transverse energy of electron

Cooling time as a function of length of cooling section

Cooling time as a function of magnetic inductive strength in cooler

Cooling time as a function of magnetic field parallelism

Previous results of commissioning

- Hollow beam
- High parallelism magnetic field in cooling section
- Electrostatic bending

Angle of Magnetic force line with respect to geometric center before adjustment

Angle of Magnetic force line with respect to geometric center after adjustment

Electron beam profile

Comparison of different bending

Noise at different bending

Results of commissioning

		CSRm		CSRe		
		Design	test	design	test	
Electron energy (keV)		35	30	300	252	
Beam current(A)		3	3	3	2.32	
parallelis m	horizontal	<1×10-4	7.84×10-6	<1×10-4	3.87×10-5	
	vertical	<1×10 ⁻⁴	8.04×10-6	<1×10 ⁻⁴	3.89×10 ⁻⁵	
Beam loss rate		<1×10 ⁻⁴	<1×10 ⁻⁴	<1×10 ⁻⁴	<1×10 ⁻⁴	
Vacuum(mbar)		3×10 ⁻¹¹	1×10 ⁻¹¹	3×10 ⁻¹¹	4×10 ⁻¹¹	
Stability of HVPS		1×10-4	1×10-4	1×10-4	1×10-4	

Stability of magnetic field power supply

	CSRm		CSRe		
	design	test	design	test	
200A PS	1.0×10-3	5.9×10-4	1.0×10-3	1.4×10-4	
780A PS	1.0×10-3	2.4×10-4	1.0×10-3	2.9×10-4	
1200A PS	1.0×10-3	3.8×10-4	1.0×10-3	6.3×10-4	
Bending PS	1.0×10-3	5.0×10-4	1.0×10-3	2.7×10-4	
CX6	1.0×10-3	1.3×10-4	1.0×10-3		
Correction coil PS					
CY6	1.0×10-3	1.1×10-2	1.0×10-3		
Correction coil PS					

Conclusion

- 1. lattice parameters of HIRFL---CSR lie in the optimal range for electron cooling
- 2. In the CSRm, the ion with higher charge state and lower energy should be chose as injection so that the ion beam will be cooled to required emittance in the shorter time
- 3. Electron cooling is more powerful when the injected ion beam has smaller initial emittance and momentum spread .

Conclusion

- 4. If introduce positive dispersion in the cooling section, the cooling time will become shorter than zero dispersion
- 5. Electron density should approach optimal value in the case of low energy, and as big as possible in the case of high energy
- 6. The magnetic field should be strong enough and parallelism is better than 1×10^{-4} .

Previous Commission of CSR

From September 2004, the injection line was tuned with 7 Mev/u C⁴⁺ beam, the ion beam intensity is about 3 microamperes. The transmission efficiency is about 70%. Three cycles beam were observed in the main ring.

We would like to acknowledge our Russian colleagues.

Sincere honor and respect to the members of international advisory committee.

Thanks!