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Abstract

The particle motion at a presence of a large magnetic field directed along the particle
trajectory demands the special description. This article deals with the decomposition of the
Hamiltonian on the two parts: fast and slow motion. The first part describes the fast rotation
around the magnetic line of longitudinal field. The second part describes the slow drift of
rotation center from one magnetic line to another. The supposed method enables to write the
simple Hamiltonian to each motion type and to formulate the matrix formalism for any
element of an accelerator device (quadruple, skew- quadruple, drift gap, bend with a field
index). The Hamiltonian decomposition has physical clearness when the longitudinal field is
larger than another fields but it i1s correct for the arbitrary parameters. At the small
longitudinal field the coupling term in Hamiltonian between two modes is essential. The
dispersion property of fast and slow modes is derived easy from Hamiltonian also. This
method expands easily for nonlinear motion of such modes. This results may be used at
analyzed the electron motion in the cooling device, the muon motion in the muon ionization
cooler [ 1] or another system with strong solenoidal coupling [2].

Hamiltonian method
A non-relativistic Hamiltonian for a single particle in the electromagnetic field can be written
as [3]
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where P,, P, P, are canonical momenta conjugated to the coordinates X,},Z. To describe the
particle motion along the reference orbit Frenet coordinate system 1s used. A particle position
1s written as

7 =ry(s)+xn(s)+ yb(s) , (2)
where 7y(s) is the position vector of the particle, z(s), 7(s) and 5(s) are tangent, normal and

binormal vectors to the reference orbit. The transverse displacement of the particle from the
reference orbit is described by coordinates x and y.
Deriving the canonical transformation with generating function
F==P[ry+xn(s)+yb(s), (3)
where P=(P,,P,,P,) 1s old canonical momenta and (x,y,s) 1s new coordinates, one can write
new Hamiltonian as
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Here (qx, qy, q.) 1S new canonical momenta, /2 =1/p 1s the curvature of the reference orbit, p 1s
the radius of curvature, (4 =A4-#, Ay =A-b, A3 =A4-7(+hx) ) is the vector potential of the

magnetic field.
The magnetic field expansion around the reference orbit is taken as [4]
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The independent components a, and b, are the multipole coefficients of the transverse
magnetic field on the reference orbit
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b, 1s the longitudinal magnetic field. Keeping only the linear and quadratic terms the
magnetic field can be read as
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Here one should take into account that no uniform longitudinal magnetic field gives the
contribution in term a;(s) according to equation (6). For example, the straight gap with

changing longitudinal magnetic field results in
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In linear approximation for the particle motion it is possible to use this equation in the
bending section. It is necessary to use the accurate paraxial expansion of the magnetic field
for the approximation of the higher order.

The resulting Hamiltonian of the particle motion is
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Here (Bx,By,BS) 1s the horizontal, vertical and longitudinal components of the magnetic
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) , K=K,——— 1s normal component of the magnetic field
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gradient, N =K, —* is skew component of the magnetic field gradient, Ny =K, — —*

By, ox By, 0s
is longitudinal gradient of the longitudinal magnetic field. All parameters of motion K, K, R,
N, N, are function of longitudinal position and time as f(s+¢&). The longitudinal and
transverse momenta are normalized on the total particle momentum.

At condition of the strong longitudinal magnetic field the motion can be decompose on
the fast Larmour rotation around the magnetic force line and slow drift of Larmour center.
The center of the Larmour rotation moves along the magnetic field force line and drifts
slowly in the plane (x,)). This drift motion is induced by the small transverse component of
the magnetic and electrical forces, non-homogenuity of the longitudinal magnetic field or the
centrifugal force. This physical picture is convenient if the longitudinal magnetic force 1s
strong.

Let us to do the change of variables
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Taking into account that p, and p, are the canonical momenta p = p ~© 4 one can obtain the
c

correlation between the new variable and usual momenta (p,, p,) and coordinates (x, y)..
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The 1'_node (P;,0,) describes the E:oordinates (X,Y) of the center of the Larmour circle. The
mode (P,,(),) relates to the rotation amplitudes of the particle around the magnetic force line.
The generating function for this variables changing is
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The new Hamiltonian is
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The first string describes the motion of the slow mode (P; ;) with large “pseudo”-mass
M=R’/K. The second string describes the fast oscillation of the mode (P, 0, with frequency
R. The third string 1s coupling between modes (P;,0;) and (P, (,). In the case R>>K, K,, N,

N; 1t 1s small and can be consider with perturbation method. The last string 1s the longitudinal
motion and dispersion terms.

Drift section

This case the Hamiltonian deals with the particle motion in the simple straight solenoid
(K=0, K,=0, N=0, N,;=0)
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The Hamiltonian doesn’t depends from variable P; and Q; . Thus, P; and (O, are the motion
integral and the center of the Larmour circle i1s immovable. The fast rotation is described by
the standard Hamiltonian of an oscillator.

The matrix for the slow motion is
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Here (P,Q;) are variables of slow mode before the element and (P,0;) are variables after
element of drift section.

Variation of the longitudinal magnetic field.
The Hamiltonian for the straight section with longitudinal magnetic field changing can
be read as
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Ignoring the coupling term one can write
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The equations for the motion of the slow mode are
p/__OH Ny, 1 0B

| =————=_—_11~= 7P1
601 2R 2B Os (18)
' 0H Ny )
O =—F=—"01=———7U
oP, 2R 2B, Os

From this equation one can see that

YB§/2 = const and XBL%/2 = const .

So the magnetic flux through the beam cross section is constant.
The motion of the fast mode 1s described by the Hamiltonian
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The slow changing of the frequency of the driving force conserves the adiabatic invariant, so
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The corresponding matrix for this optics element is
O\ _[VBs 0 |(O
| 0 Bs|\P)

Quadruple lens with longitudinal magnetic field
The total Hamiltonian with coupling term is
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and it can be read after simplification as
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The fast rotation doesn’t change significantly. The motion of the Larmour center can be
described as

(22)
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The beam is reshaped to an ellipse with axes tilted on angle 45° to (x,y) coordinate system.
Along one axis the beam is stretched, along other axis is compressed. The particle motion in
skew quadruple lens is analogously.

The simplify Hamiltonian of motion 1s
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and the equation of the particle motion 1s
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The matrix of elements for slow mode are
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Bending magnet
The particle moves in the bending magnet with some field index. Along the particle trajectory
the longitudinal magnetic field is applied. The Hamiltonian of such motion is
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At K < 0 the dynamic of the mode (P, () 1s similar to some oscillator. The centers of the
Larmour circles move along an ellipse curve. At the field index #=0.5 this curve is circle. The
length corresponding one turn along this curve is
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In the case K = 0 the field index n=0 and particle motion 1s
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Thus, the horizontal position of the particle is constant. At nonzero horizontal shift the
centrifugal force doesn’t balanced by the bending magnetic field By. As result the particle has
unlimited shift in the vertical direction.

The matrix of element for slow mode is
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Taking into account the dispersion terms the Hamiltonian can be read as
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or ignoring the term K,*/R* << 1
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The type of particle motion with some longitudinal momentum spread isn’t changed. The
center of ellipse painting the motion of the Larmour circle is shifted on value
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The fast rotation the particle acquires the additional momentum induced by the bending force
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describes the “effective mass” of particle in bending.
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This result can be obtain easy from the usual equation of motion in the ordinary (x,y,x7y )

variable. For the particle with momentum derivation p+A4p the equation of motion is
x”+k%x+Ky':lA—p,
R p (37)
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The particle with momentum p+4p placed in the reference orbit 1s not balanced between
Lorentz force and centrifugal force. Therefore, the particle shifts to new orbit
Y 12: R ER ea. (38)
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So, the dispersion in storage ring with longitudinal magnet field 1s the same as in the
usual ring with smooth focusing. The longitudinal field is not influence on placement of new
orbit. It defines only the character of motion around new orbit. By change the initial reference
momentum p, the particle begins slow drift oscillations around new equilibrium position. If
n=0.5, it 1s circles in transverse plane of beam. With decreasing of » the circle degenerates
into the ellipse with large axis in vertical direction. The period of oscillation around new
equilibrium position i1s much larger than period of revolution. Therefore, the view and
interpretation of one-turn periodic solution for dispersion function can be complicated.

As in any weak-focusing lattice, the negative mass effect is presented in simplest storage
ring with longitudinal magnet field. The particle with momentum increment moves back
relatively to the particle on reference orbit. The negative effective mass is conditioned on
predominance of path length increasing effect over effect of longitudinal velocity increase.

The value of relevant longitudinal shift 1s
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Such property of motion can lead to spontaneous modulation of proton density as a result
of negative mass instability.

The Figures 1 and 2 show the example of the particle motion in the storage ring with
strong longitudinal magnetic field. In the Figure 3, the transverse motion of particle with

derivation of momentum is shown.
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Figure 1. Phase pictures of the particle motion in the storage ring with longitudinal magnetic
field B=20 kG. The field index 1s n=0.5. The vertical straight lines are pointed the
circumference of the storage ring. The particle 1s proton with energy 2 Mel’. The ring radius
is 100 cm.
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Figure 2. Phase pictures of the particle motion in the storage ring with longitudinal magnetic

field B=20 k(. The field index 1s n=0.2.
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Figure 3. Transverse motion of particle with longitudinal momentum deviation. Field index
value 1s #=0.5. Longitudinal magnet field is =20 kG, ring radius 1s /00 cm. The initial
coordinates are X=1/.0, Y=0, X’=0.003, Y'=0. The proton energy is 2 Mel’.

Summary

The systems with longitudinal magnetic field are characterized by the strong coupling
between the horizontal and vertical motion. In this case it i1s more natural the new variables
for describing particle motion. They relate to the fast rotation of the particle around the
magnetic force line and slow drift of center of this rotation. The equations describing these
motion modes are weak coupled at the limit of the strong longitudinal magnetic field. In the
limit of the infinite magnetic field this motion modes may be considered as uncoupling. But at
a low value of the longitudinal magnetic field the coupling is strong. Thus, this situation is
opposite to the classical case when the initial uncoupling vertical and horizontal motion 1s
coupled by a weak magnetic field.
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