# Transverse echo measurements in RHIC

# Wolfram Fischer



COOL 05, Eagle Ridge, Galena, Illinois 19 September 2005

# Contents

- 1. Motivation
- 2. Experiments at RHIC
- 3. Simulations



#### **RHIC overview**



Wolfram Fischer



3

#### Luminosity lifetime of colliding Au<sup>79+</sup> beams





# **Motivation**

- Luminosity lifetime for heavy ions dominated by IBS
  - Effort to implement stochastic cooling here: M. Brennan, M. Blaskiewicz
  - RHIC II upgrade based on e-cooling here: I. Ben-Zvi, A. Fedotov, G. Wang
- Main emittance growth mechanism working against cooling is IBS

 $\rightarrow$  Good knowledge of IBS growth rates needed to predict cooling times and equilibrium beam sizes

 $\rightarrow$  Cooling times of order 1 hour, cannot afford error larger than about factor 2



# Motivation

- IBS growth rate measurements usually done by observing the free expansion of bunches
  - Must be on time scale of interest [15min at injection, hrs at store]
  - Need precise emittance measurement [not easy transversely]
- Echo measurements are
  - Much faster (~1000 turns), allow parameter scans
  - Potentially very sensitive
  - Do not rely on precise emittance measurement



- Echoes well known in plasma physics
- Sensitive method to measure diffusion rates
- Theoretical accelerator papers by Stupakov, Kauffmann (SSC)
- Longitudinal echos observed at
  - FNAL AA [Spenzouris, Colestock et al.]
  - CERN SPS [Brüning et al.]
  - BNL AGS [Kewisch, Brennan]



#### **Transverse echoes – phase space simulation**



US-LHC Collaboration Meeting: Accelerator Physics Experiments for Future Hadron Colliders, BNL, 2000

Figure 1: Left: Horizontal particle distribution in normalized phase space after the initial dipole offset. Right: The same distribution 500 turns later.

• 1-turn quadrupole kick is difficult

 echo-like signal was also observed with 2 dipole kicks of different strength (F. Ruggiero, SPS)



Figure 2: Left: Horizontal particle distribution in normalized phase space right after a 1 turn long quadrupole kick placed 500 turns after the dipole kick. Right: The same distribution 500 turns after the quadrupole kick.





Figure 3: Left: The dipole moment of the distribution versus time after a dipole kick. Right: The same signal with an additional quadrupole kick at 500 turns after the dipole kick.

[W.Fischer, B. Parker, O. Brüning, "Transverse echos in RHIC", proceedings of the US-LHC Collaboration Meeting: Accelerator Physics Experiments for Future Hadron Colliders, BNL (2000).]

### **Transverse echoes – echo amplitude formulae**

• Approximate echo signal for one-turn quadrupole kick, small dipole kick, constants diffusion coefficient D<sub>0</sub> (Stupakov, PAC97 and Handbook)

$$A_{echo} = \frac{\eta^{\text{max}}}{a} = \frac{Q}{\tau_d} \frac{\tau}{1 + 8D_0 \mu^2 \omega_0^2 \tau^3 / 3\varepsilon}$$

- $\eta_{max}$  echo amplitude, *a* dipole kick,
- $Q = \beta / f$  at quad
- $\tau_{\rm d} = T_0/4 \pi \mu$  decoherence time,  $T_0$  rev. time,  $\omega_0 = 2\pi/T_0$
- $\tau$  time between dipole and quadrupole kick
- $\mu$  detuning ( $\Delta Q$  at 1 $\sigma$  amplitude),  $\varepsilon$  distribution rms
- $D_0$  diffusion coefficient

# → not applicable for RHIC experiments (due to parameter range)

10

NATIONAL LABORATORY

# **Pulsed quadrupole in RHIC**

#### Air core magnet

(Tevatron slow extraction)

| Length l           | 1.5 m          |
|--------------------|----------------|
| Transfer B/I       | 3.6 T/kA       |
| Inductance L       | 105 µH         |
| Current I          | 50 A           |
| Voltage U          | 2 kV           |
| Rise and fall time | 13 µs (1 turn) |

Parameter set is for a quadrupole

strength of k = 0.002/m (f = 500m).



11

[W. Fischer, A. Jain, D. Trbojevic, "The AC quadrupole in RHIC", BNL RHIC/AP/165 (1999).
 O. Dressler, "Quadrupole kicker for RHIC", BNL C-A/AP/60 (2001), J. Addessi, J. Piacentino, D. Warburton]
 Wolfram Fischer

# **RHIC transverse echoes (1)**

# **First RHIC echoes**

- Au<sup>79+</sup> at injection
- single bunch
- dipole kick by injecting with angle
- 1-turn quad kick



#### [W. Fischer, R. Tomas, T. Satogata, PAC05]



Can observe echoes only

- With dipole kick of a few  $\sigma$
- Nonlinear detuning an order of magnitude larger than natural one
- Quadrupole kick times no larger than a few 100 turns



**TABLE 1.** Typical parameters for transverse echo measurement in RHIC with beams of gold and copper ions, and protons.

| parameter                            | unit          | Au      | Cu         | р      |
|--------------------------------------|---------------|---------|------------|--------|
| mass and charge number $A, Z$        |               | 197, 79 | 63,29      | 1,1    |
| relativistic $\gamma$                |               | 10.5    | 12.1       | 25.9   |
| revolution time $T_0$                | μs            |         | 12.8       |        |
| rms emittance, unnorm. $\varepsilon$ | mm∙mrad       | 0.      | 16         | 0.10   |
| detuning $\mu$                       |               | (       | 0.0014     | )      |
| decoherence time $\tau_d$            | turns         |         | 57         |        |
| dipole kick a                        | mm / $\sigma$ |         | 10/pprox 4 |        |
| normalized quadrupole kick Q         |               |         | 0.025      |        |
| time $\tau_0$                        | turns         |         | 10         |        |
| quadrupole kick time $	au$           | turns         | 44      | 50         | 200    |
| synchrotron period $T_s$             | turns         | 450     | 540        | 3900   |
| bunch intensity $N_b$                | $10^9$ (      | 0.1-1.0 | 0.1–1.3    | \$5-95 |





- no echo without detuning, no echo with large detuning
- very weak proton echoes (unexpected)



#### Scan of quadrupole kick time $\tau$





# **RHIC transverse echoes (6)**





- echo decreases with increasing bunch intensity (like IBS)
 - no proton data over sufficiently large range of N<sub>b</sub>



# **Simulations (1)**





#### **Simulations (2)**



Can find diffusion coefficient in simulation that approximately reproduces detuning scan for gold ions



#### **Simulation (3)**



Simulation can reproduce experimental main features of experimental quadrupole kick time scan



#### **Simulation (4)**



- Can find proportionality coefficient  $D_0/N_b$  so that simulation fits experimental intensity dependency ( $\rightarrow$  extracts measured  $D_0$ )
- Fitted D<sub>0</sub> corresponds to emittance growth time of about 100 h, consistent with free expansion measurements (not very accurate)

#### **Summary – Transverse Echoes in RHIC**

- Transverse echoes observed in RHIC with Au<sup>79+</sup>, Cu<sup>29+</sup>, p<sup>+</sup>
  - Dipole kick with injection under angle
  - Air core quadrupole provides 1-turn kick
- Diffusion with p<sup>+</sup> stronger than with heavier ions (unexpected)
- Observed intensity dependent echoes with Au<sup>79+</sup>, Cu<sup>29+</sup>,
  → were fitted to simulation results to extract diffusion rates



