Experimental Study of Dispersion Control Utilizing Both Magnetic and Electric Fields

COOL05 September 18th - 23th,2005 Galena, Illinois

<u>Mikio Tanabe</u>¹, Masahiro Ikegami¹, Akira Noda¹, Toshiyuki Shirai¹, Hiromu Tongu¹, Hikaru Souda¹, Shinji Shibuya², Koji Noda²

ICR, Kyoto University¹

National Institute of Radiological Sciences²

Table of Contents

- 1. Motivation
- 'S-LSR' and cooling experiments
- Why and how?
- 2. Electrodes to Control Dispersion
- Design and electric field
- 3. Experiments
- Controlled linear dispersion
- 4. Summary and Future Plans

Ion Storage Ring 'S-LSR'

Parameters	
Circumference	22.557m
Bending radius	1.05m
Lattice	QM-BM-QM
Superperiodicity	6
Bending Magnet	H-type
Stored beam (plan)	Proton : 7MeV
	²⁴ Mg ⁺ :35keV
	¹² C ⁶⁺ : 24MeV

Sec. Sec.

S-LSR (under construction)

Cooling Experiment

Electron cooler -> Proton

Aim of our LASER cooling

To realize ordering or crystallized beam

Models of Ordering beams

Each particle keeps about the same relative position

Ordering particles at a bending section

Example: Uniform electric field strength

Table of Contents

►1. Motivation

- 'S-LSR' and cooling experiments
- Why and how?
- 2. Electrodes to Control Dispersion
- Design and electric field
- 3. Experiments
- Controlled linear dispersion
- 4. Summary and Future Plans

Conditions at electrodes set point

Bending magnet of S-LSR Cross section of the magnet

Structure of a set of electrodes

Picture of a set of electrodes

Electric field precision

Table of Contents

- 1. Motivation
- 'S-LSR' and cooling experiments
- Why and how?
- ► 2. Electrodes to Control Dispersion
 - Design and electric field
 - 3. Experiments
 - Controlled linear dispersion
 - 4. Summary and Future Plans

Experimental condition

- Beam : N_2^+
- Energy : 25 keV
- Emittance : 5π mm mrad
- Vacuum condition : ~10⁻⁵Pa
- Magnetic and Electric field strength

B [T]	E[V/m]		
0.115	None	Only B	
0.252	5.71×10 ⁴	Ex.) $vB > 2E$	
0.230	4.76×10 ⁴	$vB = 2E \blacktriangleleft$	Dispersion free
0.205	3.81×10 ⁴	Ex.) $vB < 2E$	

Images on screen 1

Images on screen 2

Results 1

Summery and Future Plans

Summery

- 1. Design a set of Electrodes
- Field error<0.1% (+-5mm from the reference orbit)
- 2. Test the effect of electric fields
- Canceled linear dispersion
- Controlled linear dispersion (from + to —)

Future

- 1. Apply dispersion control to storage ring
- 2. Apply these dispersion control to laser cooling