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Electron cooling beam line:
Acceleration section
Supply line
Cooling Section
Return line
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Total length: 100 m
Cooler length: 20 m
Kinetic energy: 4.35 MeV
Phase advance: ~30 rad
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Design Envelope

Thu Sep 15 14:38:35 2005 OptiM - MAIN: - Y:\MI-31\OptiM Files\Auxilary\MI30_HighField_WithQ.opt
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Main Features of the Design Optics

= Magnetic Field in the cooler for focusing; ~ 100 G;

= Cylindrical envelope in the cooler requires magnetic flux at
the cathode to be equal to the flux at the cooler,

2 2
Bemitaemit — coolacool
= Rotation-invariant matrix from the Pelletron to the cooler;
= Possibility for no-dispersion in the return line;

= Round beam in the return line;

= Rotation-invariant matrix from the Return line back to the
Pelletron.
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Angles

= Cooling efficiency strongly depends on the effective angle
between the pbars and electrons, «1/6, . To have maximal
cooling, the electron rms angle should not exceed the proton
angle, at least for the tail protons.

» Proton angles, rms: ¢, =/¢,/(678,) ;for 95% norm. emittance

g,=5mmmrad this gives ¢ =60urad. For the tail pbars this
humber can be estimated as ~ 150 prad.

= Electron angles are contributed by the following sources:
» Electron thermal angles

. /T .
geT — aemlt emlt2 ~ 50 IJ.rad
acool]/ mc
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Sources of electron angles

» Imperfections of the magnetic field in the cooler (static); last
measurements give < 100 prad (V. Tupikov’s poster);

» Perturbations from the Main Injector ramps; recent data give ~
40 prad (more details are below);

» Optics nonlinearities, ~50-100 prad at the core edge, could be
as high as ~500 prad for the halo due to the gun non-linearity

> Envelope mismatch; so far, this is a major source of the angles,
far above all other. At the e-beam boundary, this is estimated
as ~ 0.4 mrad.
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MI ramp contribution

BPM data were taken with a sample frequency 700 Hz during 2 s of
the MI ramp (P. Joireman).

Electron helical trajectory was fitted to the AC signal every
moment of time. The figure shows rms values along the cooler for
the row signal (red), helical fit (brown) and the residual (blue).
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Larmor radius, rms = 54 um, angle, rms = 35 prad.
The residual is relatively small, and of the constant power along the line.
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Spectra of these BPM signals
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Noise power distribution for the trajectory drift mode (red) and the Larmor mode (blue),
compared with a pure white noise (brown). White noise contribution is clearly small.
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The same for a typical residual signal: almost nothing but the white noise.
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Envelope: Best Cooling Requirements

= A pbar with an rms offset a, andanrms angle 6, =a,/p,
sees electrons which angle at this offset has to be smaller
than its own:
0.(a,)<a,lp,

= Assuming the electron angles caused by the envelope
mismatch grow linearly with the offset, this is the same as
0.(a,)<a,lpB,, or Aa,la,<p,Ip,
where Aa,is an amplitude of the envelope oscillations, and
p.=BplB,, isthe lLarmor beta-function.

= Note that the condition for the small envelope mismatch is
independent of the pbar emittance.

= For B,,=100G = p,=160cm  and our B, =25m, this
leads to Aa,/a, <0.06 , and with a, =3.5mm

Aa,<0.2mm, 6,(a,) <140 prad
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Envelope Smoothing
= If the electron angles are higher than that, the longitudinal cooling
is suppressed. «1/p?

= The problem of unsmooth envelope grows from our current lack of
knowledge about optical elements; the required accuracy is better
than 1%.

= There are several ways to improve the envelope:

» To use an improved version of the simulation code for the beam inside
the Pelletron, M. Tiunov's UltraSam-Beam soft, and to improve Supply
Line (SL) optical model implemented in the OptiM code of V. Lebedev.

> To measure the envelope by the OTR located under the Pelletron, and
to improve the Supply Line model.

» To measure the envelope by scrapers in the CS, and to correct it using
the SL model

> To make sure that the SL optics is rotation-invariant, and to smooth
the envelope, operationally maximizing cooling by 2 lenses just upstream
CS.

AHevey Bunou
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OTR images vs current in the nearest upstream

lens A6 provide information about the beam
density and angles distribution at the
acceleration exit, or at 1 MeV, where the OptiM
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OTR Tomography

= OTR images vs current in the nearest upstream lens A6
provide information about the beam profile. In a simplest
implementation, the analysis assumes a round and linear
beam. Then, three parameters can be extracted for the
beam state at the Acceleration exit: the beam radius, radial
divergence, and the canonical emittance ¢, =B,,a’, (Bp)

IWeasuretnents and Fit
1.5

Apr 7 /2005 data

gTEs Cm

0.5

u}

u] 2 4 la] g 10 12 14 L& 12 20 22
Cuarresat AE, Ao

ry = 2.26 +0.06 mm r/ =0.2+0.2 mrad gle,=0.76 £0.1

A problem: the image is elliptical, althougth it should be round. So far, the reason is unknown.
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Check of this method

= TIf to calculate the initial conditions at 1 MeV from the data
of Apr 22 (3,5,2,0) A, and put these initial conditions for
the Apr 7 settings (3,5,5,5) A, I get the following envelope
(ver"ncal scale 1.5 cm)

Tue Apr 26 15:49:42 2005 OptiM - MAIN: - Y:\MI-31\OptiM Files\Auxilary\MI30_design_ALEXEY_Apr21_whole.opt

on size X&Y[cm] 1.5
T T T T

For the different settings at A4 and A5, | get the same initial conditions at 1 MeV
(upstream A2):

/

rp=2.2mm, r,=0
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OTR profiles: Measurements & UltraSam-Beam Simulations (Sep 14)

Current density distribution on TRAO7 for Upulse = 4.5 kV
(lbeam = 0.56A)
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Differential orbits (Beam Response)

Properties of the optical elements are extracted from a fit
of the differential orbits, or trajectory responses on the
correctors.

Normally, 5 correctors (4 + energy offset) are used, and the
measurement data are fit in the simulations (V. Lebedev's
OptiM) with variation of the calibration coeficients.
Problems:

» The line is only recently settled (hopefully);

> Reproducibility check just started:;

> The fit takes time.

AHevey Bunou
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Differential Orbits, Aug. 12 (Qquad QNS3C on)
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Envelope Measurements with Scrapers

The scrapers are diaphragms of 15 mm
diameter, located every 2 m.

While only one of them is in place, the
beam is shifted in some direction until it
touches the scraper. The bpm data for the
beam center is taker(-gt,thi$ point.

The beam is shifted in other direction,
and the center coordinates at touch are
detected again; usually 8 directions are

used. Then, the entire procedure is
repeated for other scrapers.

From these data, the beam ellipse and the
scraper offsets are found for every
scraper involved.

. Initial conditions for the beam envelope
are fitted for these ellipses.
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Scraper Data Analysis (Sep 1, settings #888)

= The scraper measurements were repeated Sep 1 for the same focusing
settings and with a standard (programmed by T. Bolshakov) procedure. The
results are presented (SCCO0, SCC30-SCC60, SCC8O, SCCI0, SCQO1).

Aevey Bunou 19



Scraper Data Analysis Sep 1 (Cont)

-0.15 -0.1 -0.05 0.05 0.1 0.15

Angles over the envelope at SCC00, mrad
The envelope-averaged angle is 0.22 mrad.

Envelope at various scrapers.
the average beam radius is 0.43 cm.

p.=190 cm, a_=-0.16, ,By =140 cm , a, =0.11, v =68°, u = 0.46
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Electron Angles from the Drag Force

Drag Force, measured at 200 mA and ~1.3 mm mrad pbar
emittance:

» ~20 MeV/hr at the beam center:;

» ~10 MeV/hr at 1 mm offset;

> ~b MeV/hr at 2 mm offseft;
Calculations for a round beam with a random dipole rms angle
140 prad and the envelope angle 400 prad:

> 18 MeV/hr at the beam center;

> 12 MeV/hr at 1 mm offsef;

> B MeV/hr at 2 mm offset;

Discrepancy 400 vs 200 prad from the scraper
measurements could be easily due to the beam non-linearity.

AHevey Bunou
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Beam Non-Linearity

= Beam profile for 200 mA, (Gun Sol = 0.6 A, AO=3A, A1=4A)at 1
MeV, calculated with UltraSam-Beam. This non-linearity leads to ~

400 prad of the core envelope angle for a perfectly cylindrical halo.

Profile vs radius Profile vs radius at cathode
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Conclusions

Although the pbars are routinely e-cooled, the electron
optics is far from being optimal. The drag rate significantly
drops with an offset, that shows the envelope mismatch is
high.

Envelope smoothing, hopefully, can be achieved by means of

» Improving the optical model and implementing rotation-invariant
optics with required accuracy;

» Working as close to the Pierce regime as possible;

» Until the beam core and the halo are far from being similar, use
the UltraSam simulations and OTR measurements (hopefully
cleaned from the ellipticity) for the envelope initial conditions.
The CS scraper measurements are misleading at this stage.

Smoothing the envelope, with the same dipole angles, would
allow to have the drag force of 50 MeV/hr for 5 m mm mrad
pbar beam with 0.5 A of the electron beam.

AHevey Bunou
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