

Transverse-Longitudinal Phase Space Manipulations

Kwang-Je Kim

Argonne National Laboratory and The University of Chicago

COOL05

International Workshop on Beam Cooling and Related Topics September 18-23, 2005 Eagle Ridge, Galena, Illinois

Argonne National Laboratory is managed by The University of Chicago for the University of Chicago for the University of Energy

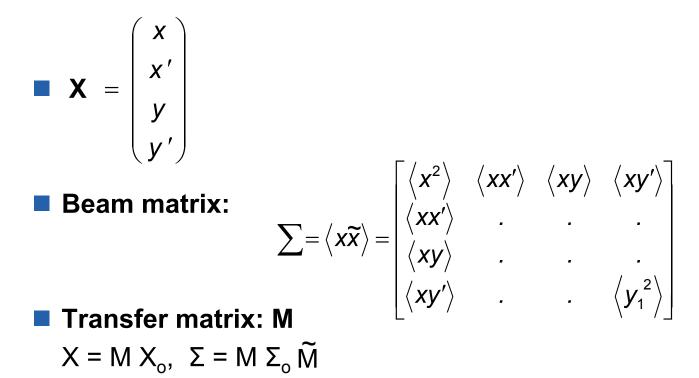
Phase Space Manipulation

- Accelerators are for manipulation of beams in 6D phase space
- Phase space manipulation in accelerators has been mainly in one 2D subspaces (z, δ) or (x, x') and in Hamiltonian system
- Beam cooling is an advanced phase space manipulation in weakly *non-Hamiltonian* system
- Manipulation involving 6-D phase space of Hamiltonian system can greatly enhance accelerator performance
- This and the next talk are about *Hamiltonian* phase space manipulation involving more than 2D

Contents

Some properties of Hamiltonian Transport

Transverse-longitudinal switching for x-ray FELs


Flat beam technique

- Applications of flat beam
 - Smith-Purcell FEL
 - X-ray pulse compression

Beam Transport and Manipulation

- 6D phase space: (x, x´, y, y´, z, δ)
- We will use 4D for notational simplicity

Hamiltonian Transport

Unit symplectic matrix

$$J = \begin{bmatrix} J_{2D} & 0 \\ 0 & J_{2D} \end{bmatrix}, \quad J_{2D} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

M is symplectic: $\widetilde{M} J M = J$

■ *Det M* = 1

There are six constraints on 2D submatrices of M

Conserved Emittances

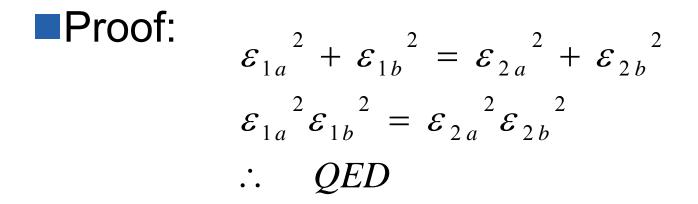
2D-case (x, x'):

$$\sum_{2D} = \varepsilon_{2D} D \begin{bmatrix} \beta & 0 \\ 0 & 1/\beta \end{bmatrix} \widetilde{D} \qquad \varepsilon_{2D}^{2} = det \sum_{2D} = \langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2}$$

4D-case (x, x´, y, y´):

-
$$\varepsilon_{4D}^{2} = det \sum$$
 is conserved

- For *uncoupled* case, can find a symplectic transformation


$$- \qquad \sum \rightarrow \sum^{s} = \begin{bmatrix} \varepsilon_{a} T_{a} & 0 \\ 0 & \varepsilon_{b} T_{b} \end{bmatrix}$$

$$I_2 = \varepsilon_a^2 + \varepsilon_b^2$$
 is conserved

Emittance Switching Theorem (E. Courant, ...) ϵ_a and ϵ_b are uniquely determined up to switching.

$$(\varepsilon_a, \varepsilon_b) \rightarrow (\varepsilon_a, \varepsilon_b) \text{ or } (\varepsilon_b, \varepsilon_a)$$

Projected Emittances for Coupled Cases

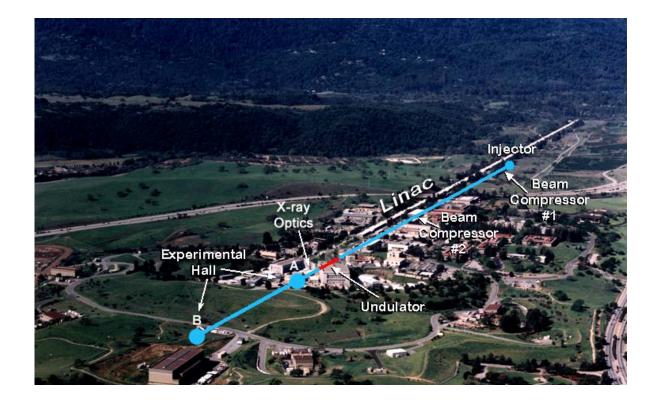
 $\sum = \begin{pmatrix} \Sigma_x & C \\ \widetilde{C} & \Sigma_y \end{pmatrix}, \quad C \neq 0 \text{ (coupled)}$

 $\varepsilon_x^2 = \det \Sigma_x, \varepsilon_y^2 = \det \Sigma_y$: projected emittances

Projected emittances are not conserved

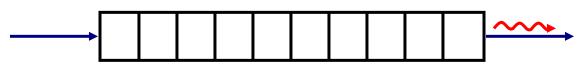
Some properties: (K.L. Brown & R.V. Servanckx, SLAC-PUB 4679 (1989))

- Start from uncoupled emittances ε_{xo} and ε_{yo}


- If
$$\varepsilon_{xo} = \varepsilon_{yo} \Longrightarrow \varepsilon_x = \varepsilon_y$$
 for all s
 $\varepsilon_x \ge \varepsilon_{xo}$
- If $\varepsilon_{xo} \neq \varepsilon_{yo}$
 $\varepsilon_x + \varepsilon_y \ge \varepsilon_{xo} + \varepsilon_{yo}$

Useful applications appear difficult, but ...

(A. Sessler's talk)



Emittance Switching for X-Ray FELs

KJK, COOL05, 9/18-23/05

SASE FEL for 30 keV

• LCLS reference parameters:

 λ = 8 keV, λ_u = 3 cm, K = 3.7, I_p = 3.5 kA, E_e = 15 GeV,

 $\Delta E/E = 10^{-4}$ (2x10⁻⁶ possible) $\varepsilon_n = 1.2$ mm-mrad, $L_{sat} = 100$ m

• Vary K, ε_n , and E_e

(Z.R. Huang)

К	E _e (GeV)	^ε n (mm-mrad)	L sat (m)	
3.7	30	1.2	300	
3.7	30	0.5	130	
3.7	30	0.1	40	•
1	12	0.1	60	4

🛏 shorter undulator

shorter undulator
 and shorter linac

• It pays to strive for an ultralow emittance e-beam

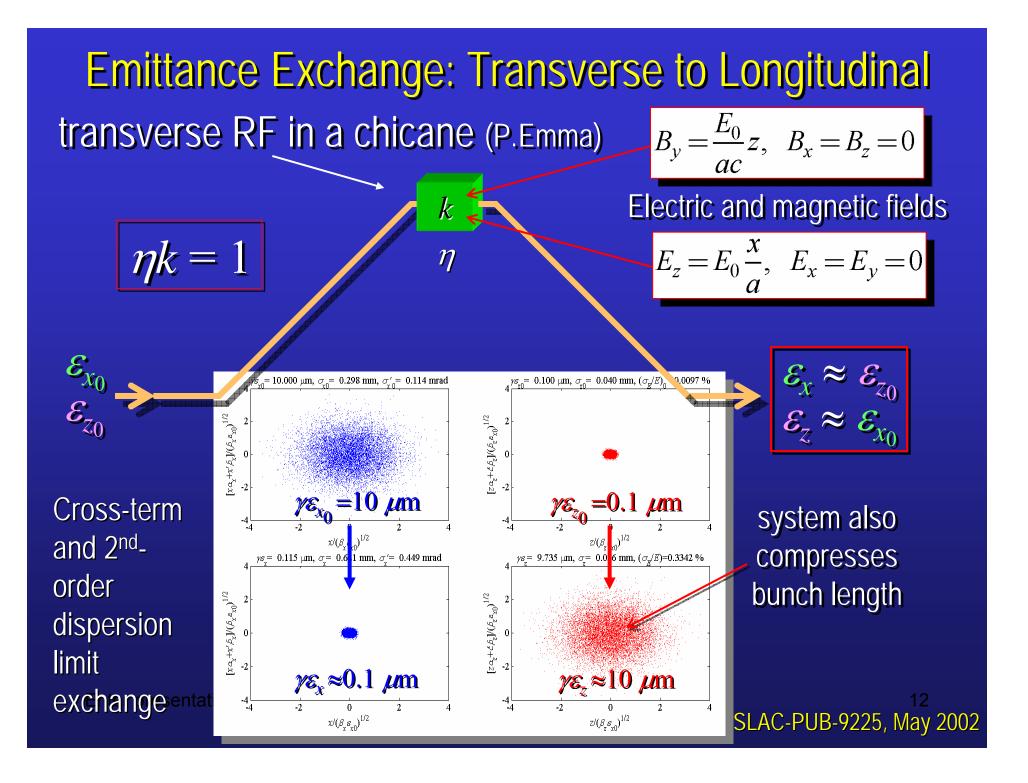
Enter presentation date

[Your Presentation Title]

An Emittance Switching Scheme for Improved X-Ray FEL Performance

(P. Emma, Z. Huang, P. Piot, and KJK)

Flat beam technique (units in m-rad) $\gamma \varepsilon_x \otimes \gamma \varepsilon_y : (10^{-6})^2 \rightarrow 10^{-5} \otimes 10^{-7}$


• Use short electron beam $\sigma_z = 20 \mu$

 $\gamma \varepsilon_z = \sigma_z \sigma_\gamma = 20 \mu \otimes 5 \times 10^{-3} = 10^{-5}$

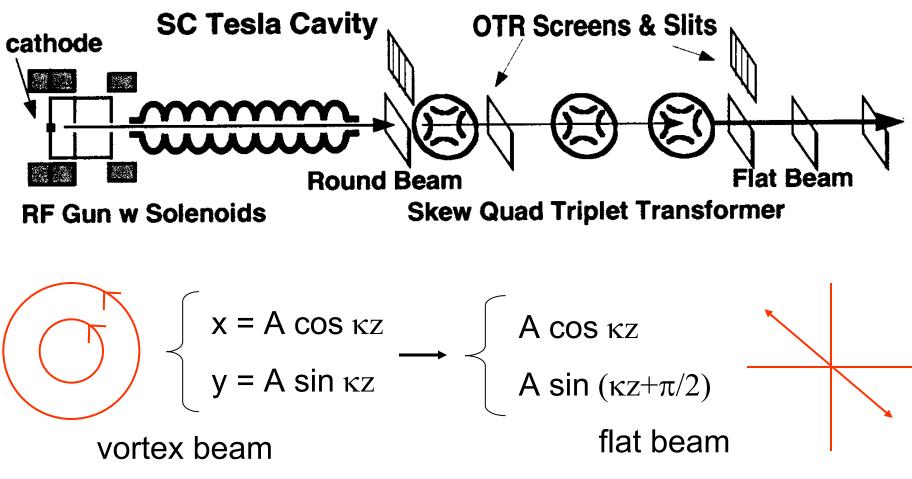
Q = 15 pC, I = 90 A

Switch $(x \leftrightarrow z)$

 $\gamma \varepsilon_x \otimes \gamma \varepsilon_y \otimes \gamma \varepsilon_z \rightarrow (10^{-7}, 10^{-7}, 10^{-5})$ Partition: $\sigma_z = 3.7 \times 10^{-6}, \delta \gamma = 2.7 \quad (\gamma \varepsilon_z = 10^{-5} \text{ m} - \text{rad})$ $\Rightarrow I = 90 \times 20/2.7 = 500A, \delta \gamma / \gamma = 10^{-4} @15 \text{ GeV}$

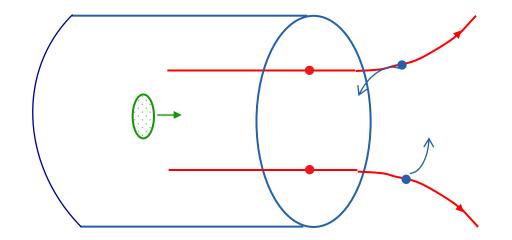
Flat Beam Technique

Theory


- Y. Derbenev (1998)
- R. Brinkmann, Ya Derbenev, and K. Floettmann(2001)
- A. Burov, S. Nagaitsev, Ya Derbenev (circular basis)
- KJK

Experiment at FNAL A0

- D. Edwards, H. Edwards, Ph. Piot,...
- Yin-e Sun (U of C thesis, May 2005)


Schematics of Flat Beam Experiment at FNPL

KJK, COOL05, 9/18-23/05

Fringe of Solenoidal Field Producing Kinetic Angular Momentum

Cathode Immersed in Solenoidal Field

Motion in solenoidal field is most conveniently described in a rotating (Larmor) frame

$$\frac{d\theta}{ds} = \frac{qB(s)}{2P_s}$$

Particle coordinates right after cathode plane

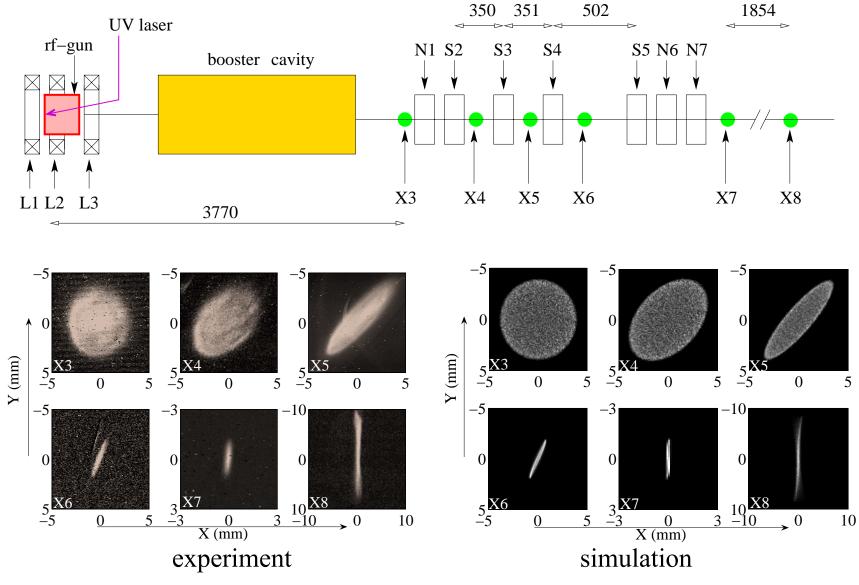
 $\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s=0^{+}} = \begin{pmatrix} x \\ y' - \kappa_{o} x \\ y \\ x' + \kappa_{o} y \end{pmatrix}$ (x', y)

 $\sum = \begin{bmatrix} \varepsilon_{eff} T_o, & \mathcal{L}J \\ -\mathcal{L}J, & \varepsilon_{eff} T_o \end{bmatrix}, \quad T_o = \begin{bmatrix} \beta & 0 \\ 0 & 1/\beta \end{bmatrix} \qquad \begin{array}{c} \beta = \frac{\sigma_c}{\sqrt{\sigma_c'^2 + \kappa_o^2 \sigma_c^2}} \\ \mathcal{L} = \langle xy' - yx' \rangle/2 = \kappa_o \sigma_c^2 \end{array}$

$$det \sum_{s=0+}^{2} = \varepsilon_{4D}^{2} = \left(\varepsilon_{eff}^{2} - \mathcal{L}^{2}\right)^{2}$$

 $\varepsilon_{4D}^{2} = \varepsilon_{th}^{4}$

(even if transform before \rightarrow after cathode surface is not symplectic)


$$\therefore \varepsilon_{eff} = \sqrt{\boldsymbol{\mathcal{L}}^2 + {\varepsilon_{th}}^2}$$

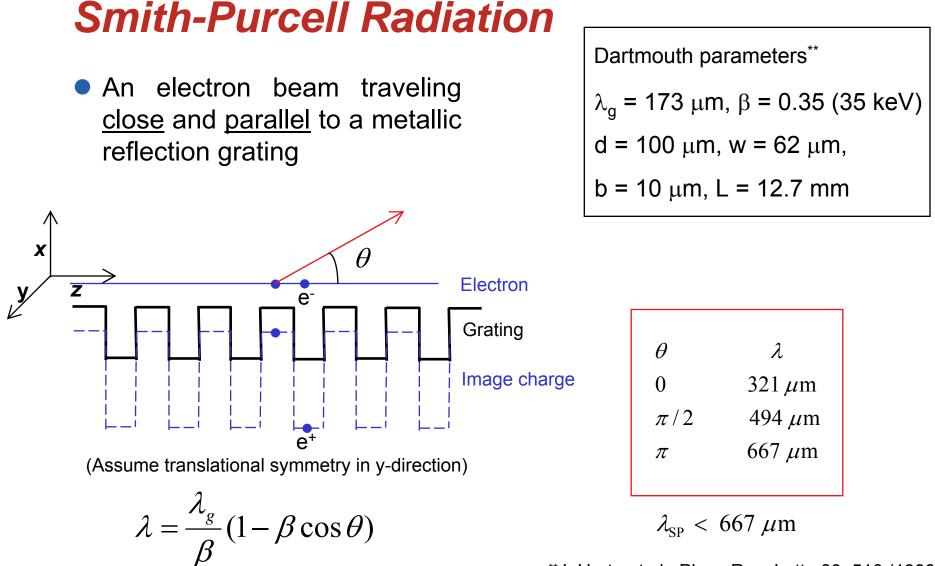
After triplet transformation:

$$\sum \rightarrow \begin{bmatrix} \varepsilon_{+} T_{+} & 0 \\ 0 & \varepsilon_{-} T_{-} \end{bmatrix} \quad T_{\pm} = \begin{bmatrix} \beta_{\pm} & 0 \\ 0 & 1/\beta_{\pm} \end{bmatrix}$$
$$\bullet \varepsilon_{\pm} = \varepsilon_{\text{eff}} \pm \mathcal{L}$$
$$\therefore \varepsilon_{+} \varepsilon_{-} = \varepsilon_{th}^{2}$$
$$\frac{\varepsilon_{+}}{\varepsilon_{-}} = \varepsilon_{th}^{2} \approx \left(\frac{2\mathcal{L}}{\varepsilon_{th}}\right)^{2}, \quad \text{for } \mathcal{L} >> \varepsilon_{th}$$

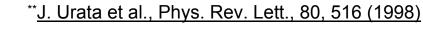
Removal of angular momentum and generating a flat beam

RGONNE NATIONAL LABORATORY

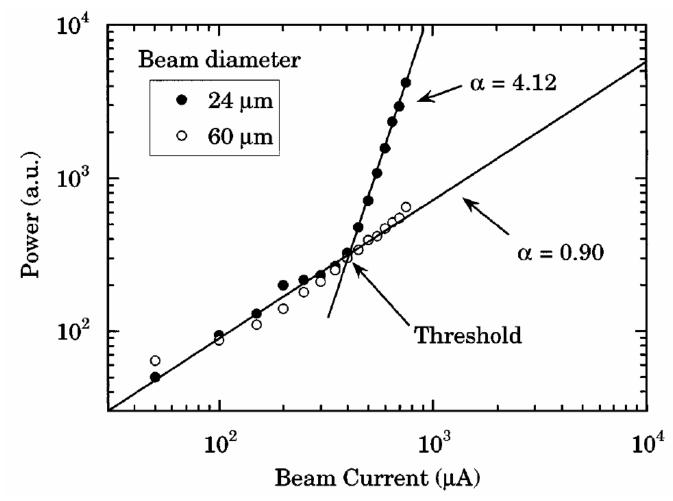
KJK, COOL05, 9/18-23/05


Applications of Flat Beams

Smith-Purcell FEL

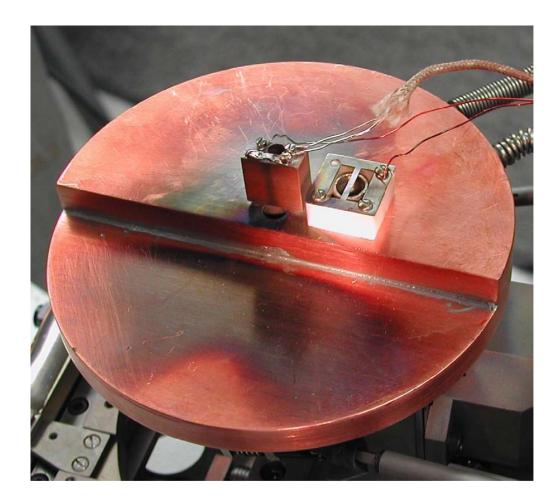

Also, image charge undulator (Ya Derbenev)

Compression of x-rays to pico-femtosecond pulses


*S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)

KJK, COOL05, 9/18-23/05

Non-Linear Behavior in Smith-Purcell Radiation ? (Dartmouth, PRL 80 (1998) 516-519)



Smith-Purcell Experiment using SEM at U of C, Copying the Dartmouth Set-Up (O. Kap, A. Crew, KJK)

Heated Specimen Stage and Possible Black Body radiation background

Smith-Purcell FEL Theory

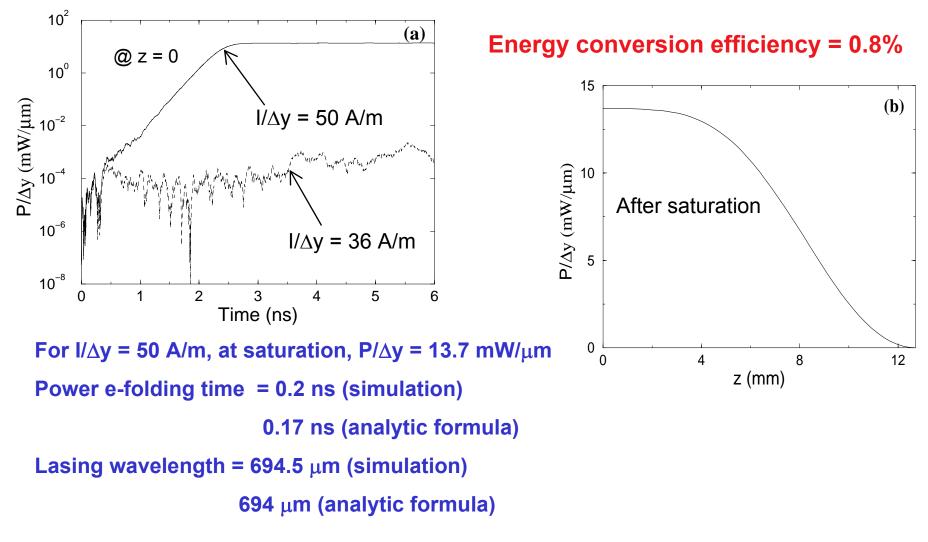
(V. Kumar and KJK, 2005)

Interaction of e-beam with the surface mode (freely propagating EM mode with phase velocity βc and frequency ω(k_z) = c)

$$\frac{\omega}{k_z} = \beta c$$

- $\frac{d\omega}{dk_z}$ < 0 : Group velocity in the opposite direction (C. Brau)
- Thus SPFEL is a Backward Wave Oscillator (BWO)

Optical energy accumulates exponentially to saturation *without feedback mirrors*


Start current condition:

$$\frac{dI}{dy} \geq \frac{dI_{sat}}{dy} = 7.7 I_A \frac{(\beta \gamma)^4 \lambda}{(2\pi)^2 \chi L^3} e^{\Gamma_o b}$$

KJK, COOL05, 9/18-23/05

Simulation Results

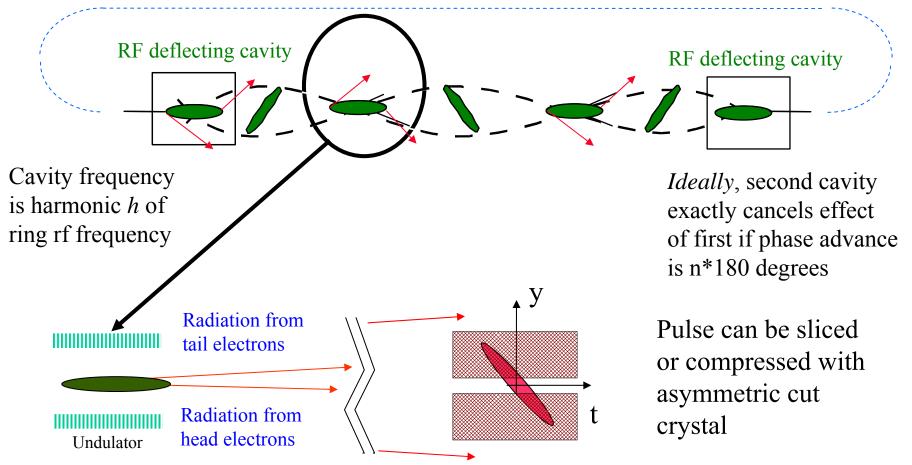
Smith-Purcell FEL for Terahertz RadiationRequires Flat Beams(KJK & V. Kumar)

Beam distance to grating surface should be $\lesssim \beta \lambda / 4\pi$

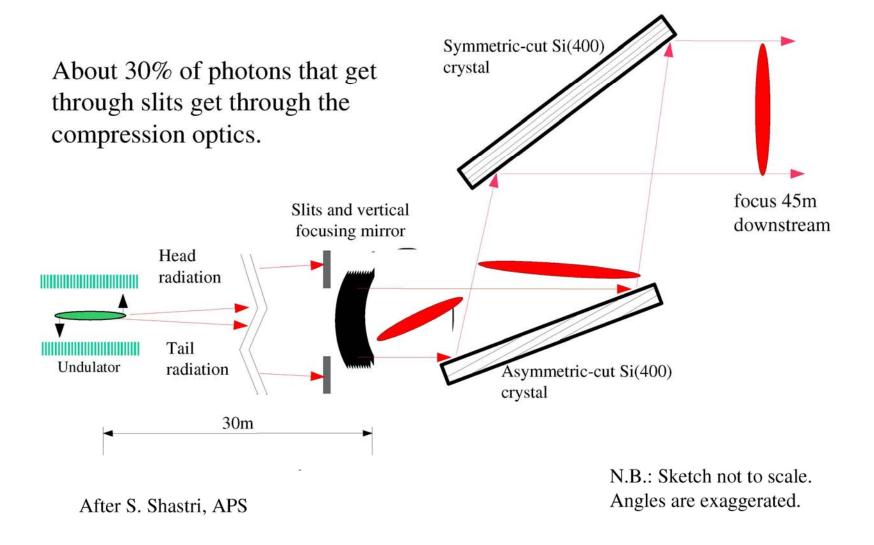
 $b \lesssim 20 \mu$

Beam width should be similar to diffraction limit

$$\Delta y \lesssim \sqrt{\frac{\beta \lambda L}{4\pi}} \sim 500 \ \mu$$


A set of beam parameters has been worked out satisfying the transverse profile, start current limit, and the requirement that the space charge effect in beam transport

Miniature Terahertz source

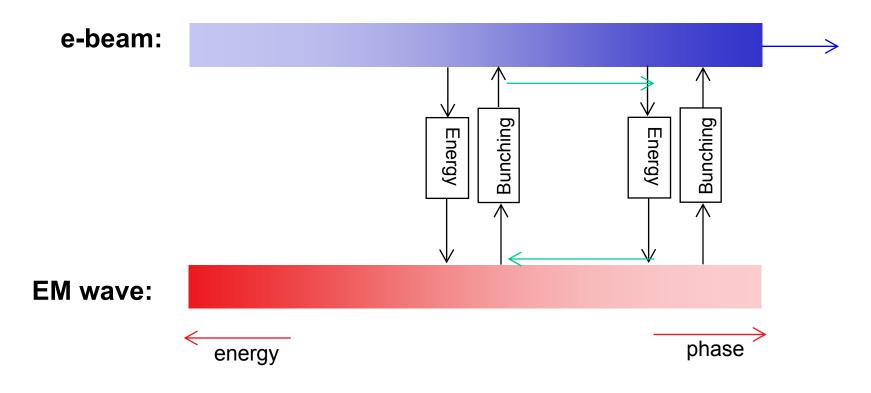

Pulse Compression via Transverse-Longitudinal Correlation (A. Zholents,...)

(Adapted from A. Zholents' August 30, 2004 presentation at APS Strategic Planning Meeting.)

Preliminary Optics Concept for 10 keV

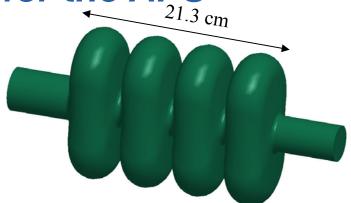
RGONNE

X-Ray Pulse Compression at the APS


- ERL with flat beam can achieve femtosecond x-rays (LUX @ LBL)
- A modest but significant compression of the x-ray pulses from 100 ps → 1 ps can be achieved at the current APS setting by installing deflection a pair of cavity
- Together with the advantage of operating user facility
 - \rightarrow Enthusiastic support from APS users

The End

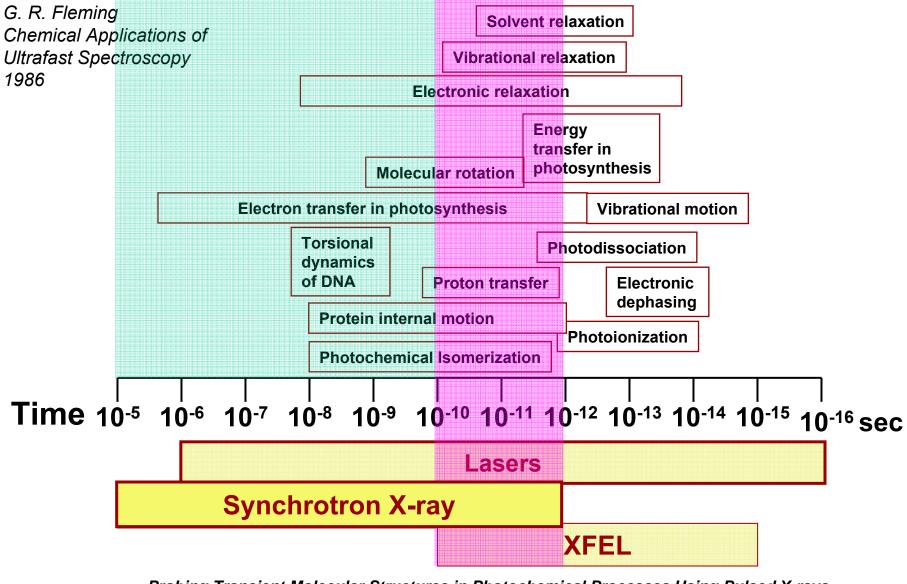
Smith-Purcell BWO



- At 690 µm, owing to the negative group velocity of the surface mode, there exists a feedback mechanism even without external resonator.
 → Backward Wave Oscillator (BWO).
- Hence, the e-beam has strongest interaction around 690 μm.

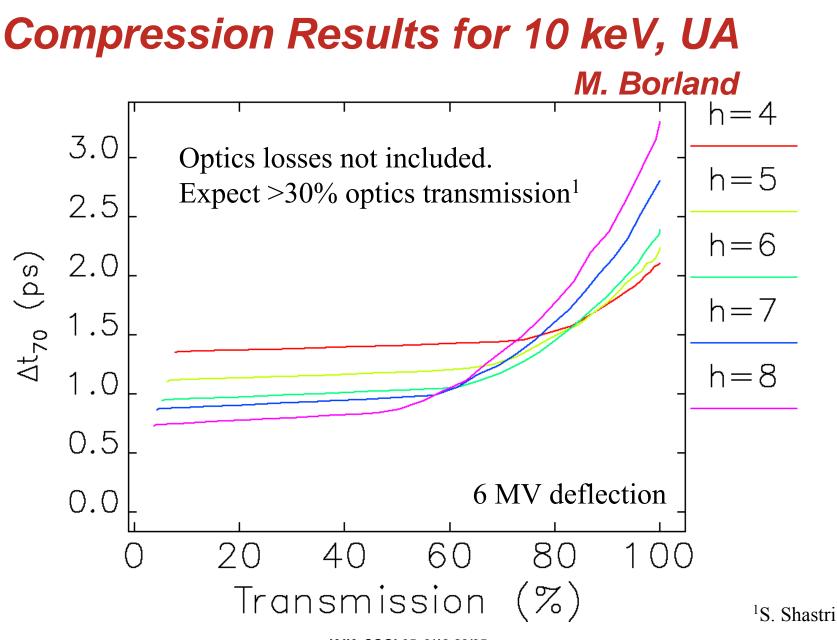
Squashed SCRF Cavities for the APS

- Squashed-cell shape was used to remove TM₁₁₀ degeneracy.
- Modeled after KEK design (cell aspect ratio ~ 1.8).
- Pi-mode chosen for 4-cell cavity to minimize number of cells. Other modes have better frequency separation.
- 4-cell cavity has 230 mT maximum magnetic field. To ensure B_{MAX} < 100 mT, three 4-cell cavities would be required.
- 1-cell cavity has 665 mT maximum magnetic field and would require seven cavities.
- 4-cell cavity has better R_T/Q and will be much more compact than 1-cell cavities.

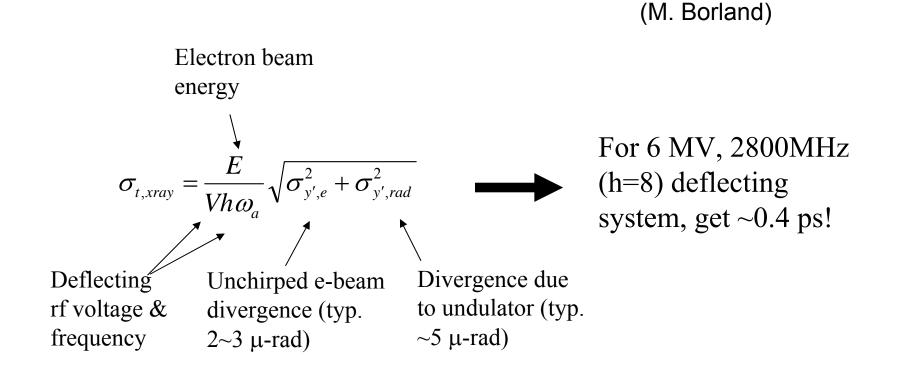


	1-cell	4-cell
Frequency	2.81 GHz	2.81GHz
λ	10.6 cm	10.6 cm
V _T	4 MV	4 MV
Active Cavity Length	5.3 cm	21.3 cm
R _T /Q	53 Ω/m	230 Ω/m
Q	3 x 10 ⁹	3 x 10 ⁹
PL	102 W	25 W
B _{MAX}	665 mT	230 mT
Cell aspect ratio	1.8	1.8

J. Waldschmidt



Multiple Temporal Scales in Chemical Sciences


Probing Transient Molecular Structures in Photochemical Processes Using Pulsed X-rays KJK, COOL05, 9/18-23/05

Minimum Achievable Pulse Length

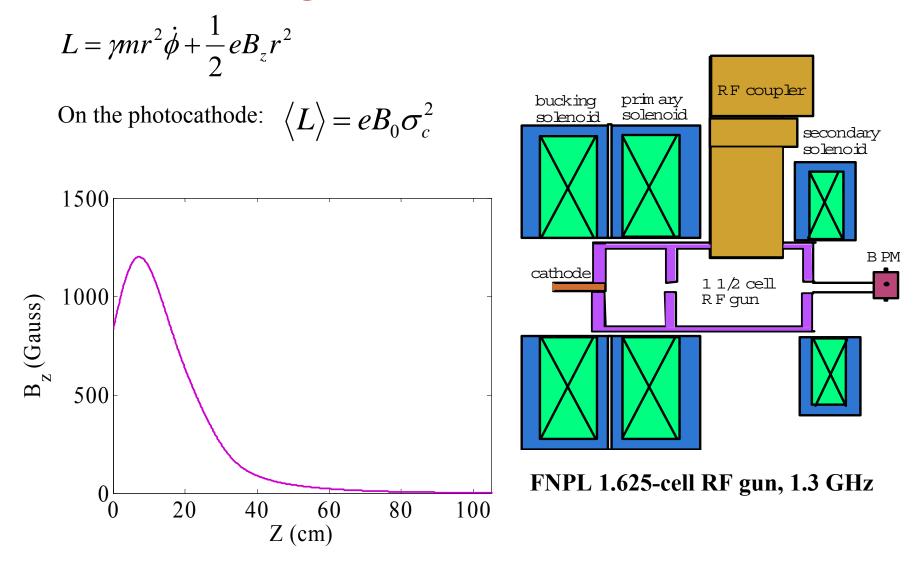
• Normal APS bunch is 40 ps rms

Emittance Requirements for X-Ray FELs

Requirements for x-ray FELs

 $\begin{array}{ll} \gamma \; \epsilon_{x}, \; \gamma \; \epsilon_{y} & \lesssim & \textbf{0.1} \times \textbf{10^{-6} m-rad} \\ \\ \frac{\delta \gamma}{\gamma} \lesssim \textbf{10^{-4}} \end{array}$

However, current state-of-the-art:


 $\gamma \epsilon_x \sim 1 \times 10^{-6} \text{ m-rad}$ $\delta \gamma / \gamma \lesssim 10^{-6} (\text{mc}^2 \delta \gamma = 2.5 \text{ keV})$

Can phase space areas be exchanged?

$$\gamma^{2}\varepsilon_{x}\varepsilon_{y}\otimes\frac{\delta\gamma}{\gamma} = \left(10^{-6} \text{ m}-\text{mrad}\right)^{2}\otimes10^{-6} \rightarrow \left(10^{-7} \text{ m}-\text{mrad}\right)^{2}\otimes10^{-4} ?$$

Production of Angular Momentum Dominated Beam

