

Antiproton Cooling in the Fermilab Recycler Ring

Sergei Nagaitsev Fermilab Accelerator Division

Fermilab Complex

 The Fermilab Collider is a Antiproton-Proton Collider operating at 980 GeV

Luminosity History

- Luminosity increase is mostly due to:
 - > Better performance of the injector chain
 - > Introduction of the Recycler into operations
 - > Alignment and lattice change in the Tevatron
 - > Improved operations, focused studies

Antiprotons and Luminosity

- The strategy for increasing luminosity in the Tevatron is to increase the number of antiprotons
 - > Increase the antiproton production rate (Run 2 Upgrades)
 - > Provide a third stage of antiproton cooling with the Recycler
 - Increase the transfer efficiency of antiprotons to low beta in the Tevatron

Antiproton Production

- 1x10⁸ 8-GeV pbars are collected every 2-4 seconds by striking 7x10¹² 120-GeV protons on a Nickel target
- 8 GeV Pbars are focused with a lithium lens operating at a gradient of 760 Tesla/meter
- 30,000 pulses of 8 GeV Pbars are collected, stored and cooled in the Debuncher, Accumulator and Recycler Rings
 - The stochastic stacking and cooling increases the 6-D phase space density by a factor of 600x10⁶
- 8 GeV Pbars are accelerated to 150 GeV in the Main Injector and to 980 GeV in the TEVATRON

FermilabTevatron Accelerator With Main Injector

Combined Shots

- Extracting antiprotons from both the Accumulator and the Recycler for the same store eg.
 - > Twelve bunches from the Recycler
 - > Twenty four bunches from the Accumulator
- Reasons
 - > Flexibility in the Run II Upgrade schedule
 - Natural merging of commissioning of electron cooling
 - > Push Recycler commissioning progress by plunging it into operations
 - > Luminosity enhancement larger amount of antiprotons for smaller emittances
 - Accumulator stack size limited to <200 mA
 - Stacking Rate
 - Transverse emittance vs Stack Size
- Combined Shot Operation
 - > Concept proposed in February '04
 - > Dual energy ramps in the MI completed and tested by May '04
 - First Attempt 6/13/04
 - Record Luminosity
 - 103x10³⁰cm⁻²sec⁻¹ recorded 7/16/04
 - 129x10³⁰cm⁻²sec⁻¹ recorded August 2005
 - Routine Operations January 2005
- Obstacles
 - Stacking Rate
 - Injector Complex 8 GeV energy alignment
 - > Longitudinal emittance in both the Accumulator and Recycler
 - > Transfer time between Accumulator to Recycler

Combined Shots

- Luminosity enhancement larger amount of antiprotons for smaller emittances
 - > Accumulator stack size limited to <200 mA
 - Stacking Rate
 - Transverse emittance vs Stack Size

Recycler - 8.9 GeV/c storage ring

- At the end of August 2003
 - > The Recycler was "on the ropes"
 - Lifetime was < 60hrs
 - Transverse emittance growth was $12\pi\text{-mm-mrad/hr}$
 - Took drastic measures
 - Lengthened the Fall 03 shutdown to bake the entire Recycler
 - Instituted the Pbar Tax (Investment) to guarantee the Recycler adequate study time and access to the tunnel

- Recycler bake-out was extremely successful
 - Transverse emittance growth reduced by a factor of 10-20
 - Lifetime > 600 hours
- Recycler commissioning has progressed rapidly
 - Using the Recycler in "Combined Shots" operations makes it a luminosity enhancement
 - Operational January 2005
 - Transverse Damper commissioned August 2005
 - Stacks larger than 150x¹⁰ pbars now possible
 - Stand alone Recycler shots to the Tevatron (Sept 2005)
 - Stack of 190×10¹⁰ pbars in the Recycler
 - 92×10³⁰cm⁻²sec⁻¹ Luminosity
- Electron Cooling commissioned July 2005
 - By the end of August 2005, electron cooling is used on every Tevatron shot

- The multiple Coulomb scattering (IBS and residual gas) needs to be neutralized.
- The emittances of stacked antiprotons need to be reduced between transfers from the Accumulator to the Recycler.
- The effects of heating because of the Main Injector ramping (stray magnetic fields) need to be neutralized.
- Transverse and longitudinal emittances of the recycled antiprotons need to be reduced by roughly 1/e in the 8-10 hour store length. (Presently not part of the mission; May be in the future)

- The multiple Coulomb scattering (IBS and residual gas) needs to be neutralized.
- The emittances of stacked antiprotons need to be reduced between transfers from the Accumulator to the Recycler.
- The effects of heating because of the Main Injector ramping (stray magnetic fields) need to be neutralized.
- Transverse and longitudinal emittances of the recycled antiprotons need to be reduced by roughly 1/e in the 8-10 hour store length. (Presently not part of the mission; May be in the future)

- The multiple Coulomb scattering (IBS and residual gas) needs to be neutralized.
- The emittances of stacked antiprotons need to be reduced between transfers from the Accumulator to the Recycler.
- The effects of heating because of the Main Injector ramping (stray magnetic fields) need to be neutralized.
- Transverse and longitudinal emittances of the recycled antiprotons need to be reduced by roughly 1/e in the 8-10 hour store length. (Presently not part of the mission; May be in the future)

- The multiple Coulomb scattering (IBS and residual gas) needs to be neutralized.
- The emittances of stacked antiprotons need to be reduced between transfers from the Accumulator to the Recycler.
- The effects of heating because of the Main Injector ramping (stray magnetic fields) need to be neutralized.
- Transverse and longitudinal emittances of the recycled antiprotons need to be reduced by roughly 1/e in the 8-10 hour store length. (Presently not part of the mission; May be in the future)

Final goal for Recycler: Prepare 9 (6 eV-s each) bunches for extraction

- Short term goals:
 - Recycler provides all Tevatron pbars
 - > 250x10¹⁰ pbars → delivers 5e10¹⁰ pbars per bunch in the Tevatron (75% efficiency to collisions, 36 bunches)
 - Long. emittance (95%): 54 eV-s
 - Transverse emittances (n, 95%): 5 µm-rad
 - Supports peak luminosities above 130x10³⁰ 1/(cm²s)
- End of Run II:
 - > Up to 600x10¹⁰ pbars
 - Same emittances

Recycler heating rates

- Residual gas scattering: 0.5 µm-rad/hr (n, 95%)
- Transverse damper: < 0.2 µm-rad/hr (n, 95%)
- IBS rates (B-M model) for 250x10¹⁰ pbars,
- 54 eV-s as a function of transverse emittances:

Gated Cooling Experiment

Two segments of beam (25e10 pbars each): one cooled/gated and one not. The uncooled bunch shows natural emittance growth due to IBS and coulomb scattering.

Recycler stochastic cooling system

Present stochastic cooling system

Cooling in barrier buckets

Keep momentum spread constant, compress the bunch length by moving the rf barrier

Simulation (MOCAC) of electron cooling + IBS, 500 mA e-beam, 600×10^{10} pbars

Recycler Electron Cooling

4.34 MeV Electron kinetic energy 0.3 % Uncertainty in electron beam energy Energy ripple $\leq 10^{-4}$ Beam current (max) 0.5 A DC 95 % Duty factor (averaged over 8 h) Electron angles in the cooling section (averaged over time, beam cross section, and cooling section length), rms \leq 0.2 mrad

Recycler measured momentum distribution using Schottky

- 1.5e11 pbars, ε_n = 2 μm
- Momentum acceptance (flat central part): about 0.5% (+/- 22 MeV/c)

Simulation of cooling demonstration

- Without cooling -- the momentum distribution remains flat over 0.3% span for 30 minutes
- Coasting beam, IBS+ECOOL simulation, $\varepsilon_n = 2 \mu m$ -rad, Ie=0.1 A, rms angular spread = 0.5 mrad

First interaction - July 09, 2005

Electron energy adjusted down by 2 keV

Energies aligned - we were within 3 kV!

 For an antiproton with zero transverse velocity, electron beam: 200 mA, 3-mm radius, 300 eV rms energy spread and 200 µrad angular spread

Equilibrium long. emittance

- For a nearly constant drag force, F_0 , the equilibrium momentum distribution is not gaussian but exponential: $f(p) \sim \exp(-|p|/p_0)$, where $p_0 = D/(2F_0)$ and D is the diffusion rate.
- The diffusion rate is mostly determined by the intrabeam scattering.
 Recycler Schottky
- The rms momentum spread is √2 p₀ (keep at 3.5 MeV/c)
- For IBS: $D \approx 25 \text{ MeV}^2/\text{hr}$
- Need $F_o \approx 5$ MeV/hr

Drag force measurements: electron energy jump by +2 keV

Momentum distribution (log scale)

Beam emittance was measured by Schottky: $1.5 \mu m$ (n, 95%). In the cooling section this corresponds to a 0.9 mm radius (rms), electron current 200 mA

Drag force - voltage jump +2 kV

Cooling rate for small amplitudes

• For small momentum deviations (< 1 MeV) the cooling force is linear: $F \approx -\lambda p$. The distribution function in momentum is close to being gaussian.

Cooling OFF-ON

 By turning the electron cooling OFF and ON again one can determine both the diffusion and cooling rates

Electron cooling in operation

Recycler-Only Operations

- Recycler has been participating in Collider
 Operations in the Combined Shot mode because the Recycler Stack size has been limited to ~120x10¹⁰ pbars
 - Longitudinal Cooling
 - Transverse Stability
- With Electron Cooling operational and the transverse dampers commissioned, the Recycler stack size can now be increased to over 200x10¹⁰ pbars

- The Collider complex is now transitioning from Combined Shot mode to Recycler-Only mode
 - > Faster average stacking.
 - Smaller pbar emittances in the TEV

Recycler Electron Cooling Summary

- Electron cooling commisioning
 - Electron cooling was demonstrated in July 2005 two months ahead of schedule.
 - By the end of August 2005, electron cooling was being used on every Tevatron shot
- Electron cooling rates
 - Drag rate: 20 MeV/hr for particles at 4 MeV
 - Cooling rate: 25 hr⁻¹ for small amplitude particle
 - Can presently support final design goal of rapid transfers (30eV-sec every hour)
 - Have achieved 500 mA of electron beam which is the final design goal.

