## **The FAIR Project Science Goals**

## FAIR = Facility for Antiproton and Ion Research

| Studies of                                                                                        |                                                                      |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| short-lived rare isotope beams:                                                                   | astrophysics, nucleosynthesis in supernovae<br>and stellar processes |  |
| hadron matter with antiprotons:                                                                   | confinement of quarks,<br>generation of hadron masses                |  |
| compressed hadronic matter in high energy nucleus-nucleus collisions                              |                                                                      |  |
| bulk matter in the high density plasma state: inertial confinement fusion,<br>astrophysics issues |                                                                      |  |
| Quantum Electrodynamics:                                                                          | extremely strong electro-magnetic fields,<br>ion-matter interactions |  |
|                                                                                                   |                                                                      |  |

## **History and Status of the FAIR Project**

2001 CDR (conceptual design report) → positive response of German Ministry of Science and Research request: 1) international contribution 25 % of 670 Mio € 2) TDR (technical design report) 2004 10 countries signed MoU (Finland, France, Great Britain, Greece, Italy, Poland, Russia, Spain, Sweden, Germany **Observers: China, Hungary, India** international boards established present: AFI: administrative and financial issues STI: scientific and technical issues work on definition of project, financial contributions Additions after CDR: **RESR:** accumulator ring for antiprotons AIC: antiproton - RIB collider FLAIR: low energy antiproton physics **PAX:** polarized antiprotons

Recent modifications: fit project into a cost frame of 1 Bio. € new cost estimates, additional subprojects and manpower included

TDR end of 2005, project definition to German government



## **The New FAIR Accelerators**





## SIS100 Superconducting Magnet R&D



### **Nuclotron Dipole**

- B<sub>max</sub> = 2 T dB/dt = 4T/s
- Window frame magnet with s.c. coil
- Main task :

Reduction of AC losses during ramping improved iron yoke design (40 > 13 W/m)

#### in collaboration with JINR Dubna

### significant R&D progress achieved on dynamic losses and field quality



## **RF Systems for SIS100**

 Dual Harmonic Acceleration Systems SIS100 20 ferrite loaded cavities - V<sub>a,tot</sub> =400 kV frequency range : 1.15 – 2.67 MHz, h=10 (8 ferrite loaded cavities - V<sub>a,tot</sub> =150 kV frequency range : 2.3 – 5.35 MHz, h=20)

alternative solution: MA loaded cavities

- Compression Systems SIS100
   25 MA loaded cavities V<sub>c,tot</sub> = 1 MV frequency range : 465 kHz (±70) (h= 2)
- Barrier Bucket Systems SIS100 (precompression and stacking) broad band MA loaded cavities - V<sub>b</sub> = 2 x 15 kV

total length of RF-Systems ~ 90 (115) m (~10 % of ring circumference)

Dual Harmonic Acceleration Systems SIS300
 6 ferrite-loaded cavities - V<sub>tot</sub> = 80 kV (h=10)
 frequency Range: 2.67 – 2.76 MHz

*M. Steck, COOL05, September 19-23, 2005* 



SIS18



# SIS300 Magnet R&D

### in collaboration with IHEP, Moscow



Cross section of the UNK dipole (4.5 K) with **two** layer coil

Operation parameters : 5.11 T at 0.11 T/s

# Design Study for a model dipole based on the UNK magnet design

### Goals:

- Increase field 5.1  $\rightarrow$  6.0 T
- Increase ramp rate 0.11  $\rightarrow$  1. T/s
- Increase bore 80 → 100 mm
- Reduction of AC losses
  - filament diameter
  - wire twist pitch
  - wire coating
  - cable (interstrand) losses

## **The RIB Separator SuperFRS**



## **The FAIR 13 Tm Storage Rings RIBs to CR** pbars to CR stable ions to NESR to low energy pbars back to SIS100 complex (ions, pbars) **FLAIR** $\rightarrow$ talk by C. Welsch CR **NESR** pbar and RIB



# **The Collector Ring CR**



M. Steck, COOL05, September 19-23, 2005

• fast stochastic cooling of antiprotons and rare isotope beams fast bunch rotation with rf voltage 200(400)kV adiabatic debunching stochastic pre-cooling system 1-2(1-4)GHz optimized ring lattice for proper mixing large acceptance superconducting dipoles

> isochronous mass measurements of rare isotope beams operation at transition energy isochronous (RIB) ≤ 790 MeV/u 2.55/3.17 ± 0.7 % 70/50×10<sup>-6</sup> m ≥ 1.84

## **Techniques for Fast Cooling in CR**

Fast bunch rotation of SIS100 bunch rf voltage 200 (400) kV at h=1 after passage of production target





providing optimum initial parameters for stochastic cooling

M. Steck, COOL05, September 19-23, 2005

Fast stochastic pre-cooling System band width 1-2 (1-4) GHz matched to velocities  $\beta = 0.83 - 0.97$ rf power ~ 1-2 kW per system



## RESR

## **The Accumulator and Decelerator Ring**



### reuse of ESR components use of NESR dipole magnets

accumulation scenario ? classical CERN scheme ↔ (large momentum acceptance)

↔ barrier bucket accumulation
 (short rf barriers, timing)

→ talk by T. Katayama

M. Steck, COOL05, September 19-23, 2005

circumference245.5 mmagnetic bending power13 Tmtunes  $Q_x/Q_y$ 3.8/3.3momentum acceptance $\pm 1.0 \%$ transverse accept. h/v80/35×10-6 mtransition energy3.62

### accumulation of antiprotons by stochastic cooling

max. accumulation rate  $7 \times 10^{10}/h$ (first stage  $2.6 \times 10^{10}/h$ )

## fast deceleration of RIBs from 740 to 100 MeV/u

with maximum ramp rate 1T/s

## **NESR**

## **Versatile Storage Ring for Physics Experiments**



## <u>Ions</u>

storage and cooling of ion beams in the energy range 740  $\rightarrow$  4 MeV/u maximum deceleration rate 1 T/s

experiments with internal target *luminosity up to 10<sup>29</sup> cm<sup>-2</sup>s<sup>-1</sup>* RIB accumulation by electron cooling

collider mode
1) with electrons *luminosity up to 10<sup>28</sup> cm<sup>-2</sup>s<sup>-1</sup>*2) with antiprotons *luminosity up to 10<sup>23</sup> cm<sup>-2</sup>s<sup>-1</sup>*

### electron target

## Antiprotons

deceleration  $3000 \rightarrow 800 \rightarrow 30 \text{ MeV}$ 

electron cooling at 800 MeV

## **NESR Electron Cooler**

### design by BINP, Novosibirsk



|--|

| energy         | 2 - 450 keV                     |
|----------------|---------------------------------|
| max. current   | <b>2 A</b>                      |
| beam radius    | 2.5-14 mm                       |
| magnetic field |                                 |
| gun            | up to 0.4 T                     |
| cool. sect.    | up to 0.2 T                     |
| straightness   | 2×10 <sup>-5</sup>              |
| vacuum         | ≤ <b>10</b> <sup>-11</sup> mbar |
|                |                                 |

**Issues:** • high voltage up to 500 kV

- fast ramping, up to 250 kV/s
- magnetic field quality



## **Super-ferric Dipole Magnets for NESR/RESR**

### preliminary 2D-design of NESR dipole



# The High Energy Storage Ring HESR



## **The HESR Electron Cooling System 1**

### strong magnetized cooling provides highest cooling rates



## **The HESR Electron Cooling System 2**

### **The Pelletron version**

# HVE 5.0 MV COAXIAL TANDETRON ACCELERATOR SYSTEM ...... $\rightarrow$ talk by D. Reistad comparison of systems G 🚝 👖 M. Steck, COOL05, September 19-23, 2005

### The Dynamitron version

# **Staging of the FAIR Project - Stag**



### **Civil Construction**

- Ringtunnel for double ring synchrotron incl. technical buildings
- Buildings housing the SFRS, the CR and NESR plus nuclear structure and atomic physics experiments
- Office building

### Accelerator

- 2 x 10<sup>11</sup>/puls U<sup>28+</sup> at 200 AMeV
- 4 x 10<sup>10</sup>/puls U<sup>73+</sup> at 1000 AMeV
- 4 Hz up to 12 Tm; 1 Hz up to 18 Tm
- · Bunch compression to 70 ns

### Research

- Nuclear structure and nuclear astrophysics (gain factor in intensities for radioactive secondary beams: ~100)
- Plasma physics at 'old' facility (gain factor in power density: ~200)
- Atomic physics studies with highly charged/radioactive ion beams)

# **Staging of the FAIR Project - Sta**



### Civil Construction (completed)

- p linac building
- HESR building
- Buildings housing nuclear collision, plasma physics and atomic physics experiments

### Accelerator

- 1 x 10<sup>12</sup>/puls U<sup>28+</sup> at 2,7 AGeV
- 1 x 10<sup>11</sup>/puls U<sup>73+</sup> at 8,3 AGeV (Ne<sup>10+</sup> bis 14 AGeV)
- Bunch compression to 50 ns
- 2,5 x 10<sup>13</sup>/puls protons up to 29 GeV
- up to 10<sup>11</sup> antiprotons accumulated, stored and cooled in the HESR up to 15 GeV
- low (down to zero) energy antiprotons at NESR and HITRAP

#### Research

- Nuclear structure and nuclear astrophysics (full gain factor in intensities for radioactive secondary beams: ~1000-10000)
- QCD studies with protons and antiprotons
- precision studies with antiprotonn beams addressing fundamental symmetries and interactions



# Staging of the FAIR Project - Stage



#### Accelerator

- 2 x 10<sup>9</sup>/puls U<sup>92+</sup> up to 34 AGeV
- Stretcher option with long extraction times from seconds up to minutes
- · High energy e-cooling for HESR

#### Research

- Full energy and luminosity for nuclear collisions program at CBM
- Precision QCD Studies at PANDA up to 15 GeV
- Plasma research (full gain factor in power density: ~2500)
- Atomic reaction studies with fast beams
- Full parallel operation of up to four experiments

