Stopping of ions in matter Radio frequency buncher cooler

TRIµP Facility at KVI

TRIµP – Trapped Radioactive Isotopes: µ-laboratories for fundamental Physics

G P Berg, U Dammalapati, S. De, S. Dean, P G Dendooven, O Dermois, G Ebberink, M N Harakeh, R Hoekstra, L Huisman, K Jungmann, H Kiewiet, T. Middelmann, A. Mol, R Morgenstern, G Onderwater, A Rogachevskiy, M Sohani, M Stokroos, R Timmermans, E Traykov, L Willmann and H W Wilschut

25

KVI Trapped Radioactive Isotopes: μ icro-laboratories for Fundamental Physics

Experimental Program of TRIµP group

Investigating discrete symmetry violations C, P, and T.

- Origin of Parity Violation in Weak Interactions
 - \Rightarrow details of β -decays **Na, Ne isotopes**

Dominance of Matter over Antimatter

CP - Violation Time Reversal Symmetry Parity Violation

 \Rightarrow permanent electric dipole moments

Ra isotopes

Need amplifiers to observe the effects:

near degenerate opposite parity states in atoms, nuclei and molecules

The race for a nonzero EDM...

Why do we need it cold?

The role of atom trapping

The trap sample:

- long storage times
- isotope (isomer) selective
- spin manipulation
- point source, no substrate
- recoil ion momentum spectrometry
- state preparation (for APNC,edm...)
- "low" EM fields (otherwise ion traps)
- Ideal environment
 for precision experiments

Laser Cooling and Trapping

Туре	Energies Scale	
Slowing	1000 m/s	
Zeeman, white light, chirped laser, bichromatic force	100 meV	
ΜΟΤ	100 m/s	inhomogeneous B-Field
Optical Molasses	10 m/s, 1 K	no B-Field
FORT	> 1 mK	no B-Field
Magnetic Trap	$0.7 \text{ K/T/}\mu_{B}$	inhomogeneous B-Field
Cryogenic Buffer Gas Loading	$0.7 \text{ K/T/}\mu_B$	inhomogeneous B-Field

Trap losses: background gas ~1 s @ 10^{-9} mbar optical traps \Rightarrow optical cycling losses

Trapped Radioactive Isotopes: μ icro-laboratories for Fundamental Physics

Stopping Ions in gas A general solution?

- What can theory tell us?
 - "Just need the charge exchange cross sections"
- Should it work?
 - Energy mismatch for ions at rest
- Does it work?
 - Existing devices
- How can we learn about the physics?
 - Cross sections and others

Ions in gasses: different applications

- rfq cooler, buffer gas cooling in ion traps, mass spectrometry
- creation of neutral atom beams, resonant charge exchange
- Muonium (μ^+e^-) formation in gasses (Ar, Kr, Xe)

Gas	Muonium fraction	Energy mismatch
Ar	0.65(5)	2.22eV
Kr	0.80(10)	0.46eV
Xe	1	-1.46eV

Charge Exchange Cell

TRIµ**P**

charge states

=> Determine mean charge as function of exchange gas pressure

TRIµP

56keV Oq+ in He

Charge fraction O^{q+} in He

 $F_q = \frac{I_q}{\sum_{q'>0} I_{q'}}$

 $\sigma_{10} \& \sigma_{01} \text{ important} \\ \text{for } 1^+ \& 0 \text{ fractions} \\$

Charged State fractions

cross sections are energy dependent

$$\frac{dI^{-}}{dx} = -nQ_{10}I^{-} + nQ_{01}I^{0}$$

$$\frac{dI^{0}}{dx} = -nQ_{01}I^{0} + nQ_{10}I^{-} + nQ_{10}I^{+}$$

$$= 0 \text{ at any position} \text{ if } n_{coll} >> 1$$

$$\frac{dI^{+}}{dx} = -nQ_{10}I^{+} + nQ_{01}I^{0}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge change from } q=i \text{ to } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge change from } q=i \text{ to } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=i \text{ to } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross section for H charge } q=j}$$

$$\stackrel{P_{i}=\text{fraction with } q=i}{\cdot Q_{ij} \text{ cross } q=j}$$

Average charge of Xe in He

Target thickness in He (ug/cm2)

TRIµ**P**

Indication of large neutral fraction.

How does it continue toward lower energies? Not accessible with this method

Survival of ions after stopping in He

DJMorrissey, KVI seminar, Jul/2005

Complilation by D. Morrissey, MSU

Ø)

Trapped Radioactive Isotopes: μ icro-laboratories for Fundamental Physics

Our RFQ cooler/buncher concept

KVI Trapped Radioactive Isotopes: *µ*icro-laboratories for Fundamental Physics

Preliminary results for RFQ cooler buncher

- Storage time several seconds
 -> purity of buffer gas with production rate fill trap in about 1s
- Drift tube accelerator -> no high voltage platform
- Efficiency for MCP detector for different ion energies
- Good transmission > 80% of RFQ
- Short (200ns) ion pulses

KVI Trapped Radioactive Isotopes: μ icro-laboratories for Fundamental Physics