2005/09/23. Galena. IL. USA. COOLOS Cooling techniques for trapped particles and new trends in physics with trapped particles

What to do with slow p

Red:ASACUSA+FLAIR Blue:FLAIR

- 1. Atomic physics of Antimatter
 - **H** Formation (also $p\mu^+$ formation)

CPT symmetry test via \overline{H} vs H ($\overline{p}\mu^+$ vs $p\mu^-$), gravity

- 2. Atomic physics of "heavy electron" lonization by heavy electron exchange collision between p and e⁻: pA⁺ formation (nuclear surface structure: pA⁺ Annihilation)
- 3. Non-neutral plasma physics
- 4. Antimatter chemistry: \overline{H}_2 , \overline{H}^+ , \overline{H}_2^+ , etc.

What to do with slow p

- 1. Atomic physics of Antimatter \overline{H} Formation (also $\overline{p}\mu^+$ formation) CPT symmetry test via \overline{H} vs H ($\overline{p}\mu^+$ vs $p\mu^-$), gravity
- 2. Atomic physics of "heavy electron" lonization by heavy electron exchange collision between p and e⁻: pA⁺ formation (nuclear surface structure: pA⁺ Annihilation)
- 3. Non-neutral plasma physics
- 4. Antimatter chemistry: \overline{H}_2 , \overline{H}^+ , \overline{H}_2^+ , etc.

What to do with slow e⁺

1. Atomic collisions with $e^{\rm +}$

H Formation

Ionization and Ps formation in e⁺-atom collisions
Ps-surface interaction
Cooling of highly-charged ions

2. e⁺-e⁻ plasma

3. "Half-" matter chemistry: Ps (e^+e^-).Ps⁺, Ps⁻, Ps₂

CPT symmetry test

☆One possible measure: Planck mass

 $M_{pl} = \sqrt{\hbar c / G} \approx 10^{19} GeV / c^2 \rightarrow$ Force the Nature to say

☆Listen to a whisper of the Nature

$$(m_p / M_{pl})m_p \sim 10^{-19} GeV / c^2$$

☆High precision measurements at low energy

	Experimental value (Hz)	$\delta v_{exp} / v$	$ v_{th}-v_{exp} /v$
v_{1S-2S}	2,466,061,413,187,103 (46)	$1.7 \mathrm{x} 10^{-14}$	1x10 ⁻¹¹
v _{HFS}	1,420,405,751.768 (1)	7.0×10^{-13}	(3.5 ± 0.9) x10 ⁻⁶

2.Trapping, cooling, and manipulation of ps

AD RFQD MRT $p: 2.6 \text{GeV} \rightarrow 5.3 \text{MeV} \rightarrow 100 \text{keV} \rightarrow 10 \text{keV} \rightarrow 0.1 \text{eV} (\rightarrow 10^{-4} \text{eV})$ $p \#:5 \times 10^7$ 3×10^7 9×10^6 1.5×10^6 1.2×10^6

Kinetic energy decrease : $\sim 10(13)$ orders of magnitude Accumulation efficiency: $\sim 4\%$

cf: traditional degrader foil scheme :

5.3MeV \rightarrow 10keV \rightarrow sub eV Accumulation efficiency: (0.1%

RFQD:5.3MeV \rightarrow 0.1MeV

RFQD-MRT-Extraction beamline

MRT (Multi-Ring-Trap)

MRT: cooling below 10keV

Synchrotron cooling of e

Sympathetic cooling of p

5 shots stacking: 5million p

Cooling of ps: realtime meas.

$$\frac{\epsilon_3}{\epsilon_0} = 1 - \frac{\omega_p^2}{\omega_l^2} = \left(\frac{\alpha - \epsilon_3/\epsilon_0}{\alpha^2 - 1}\right)^{1/2} \frac{P_l(\xi_1)Q_l'(\xi_2)}{P_l'(\xi_1)Q_l(\xi_2)}$$

$$\xi_1 = \alpha / \sqrt{\alpha^2 - \epsilon_3 / \epsilon_0}$$

$$\xi_2 = \alpha / \sqrt{\alpha^2 - 1}$$

$$\frac{\epsilon_3}{\epsilon_0} = 1 - \frac{\omega_{\rm p}^2}{\omega_l(T)^2} \left(1 + \frac{3k_{\rm B}T}{m} \frac{k_l^2}{\omega_l(T)^2} \right)$$

 $\rightarrow \Delta T \sim 0.6 \text{eV}$. $\tau_{cool} \sim 20-30 \text{s}$

Kuroda et al., PRL94(05)023401

Behavior of p cloud

Trapping, cooling, & extraction

Behavior of p cloud

Trapping, cooling, & extraction

Extraction beamline for gas collision

Differential pumping : 6 orders of magnitude Transport efficinecy :)50%

Distribution beamline of p beam

DC & Pulsed Ultraslow p Beam

→new age of ultraslow p science

Comparison among different schemes

Degrader Foil: 10³-10⁴/AD shot

MUSASHI(present): 1.2×10^6 /AD shot (3-4 shots for p comp.) ELENA(expected): 1.3×10^7 /AD shot (cooling, transport?)

*If $\Delta p/p$ is reduced to 10^{-4} at AD and 10^{-2} at RFQD

30M from AD \rightarrow 7.5M/AD shot from MUSASHI cf. 13M/AD shot from ELENA

3. Trapping of et under UHV cond.

The same principle as ps e^+s from ²²Na are continuous \rightarrow High density electron plasma (10¹¹/cm³)

s/mCi (a) 300 $\epsilon_{a}^{\text{max}}$ (%) Accumulation Rate 2000.5 100ю 0 -600 (b)-700 $V_{RM}^{max}(V)$ -800 -900 -1000 $[x10^{10}]$ Ne

Oshima et al., PRL93(04)195001

Trapping efficiencies in UHV

4. Synthesis of cold H atoms& manipulation

4.1 Nested trap scheme

- ATHENA: Amoretti et al., Nature 419(2002)456
- ATRAP: Gabrielse. et al.. PRL89(2002) 213401

Very hot ! (several thousands K) In Rydberg states (n >> 1) \rightarrow New scheme Cannot trap

4. Synthesis of cold H atoms & manipulation *r

4.2 A possible solution: Cusp trap No instability

Automatic cooling of e^+ Cold \overline{p} and e^+ in the same region Magnetic bottle for neutral particles

H fraction to be trapped

0.086meV H

Trajectories of 0.268meV H(1S)

Spin polarized H beam focused and intensified

p magnetic moment measurement

Production of ground state $H \downarrow$ Intensity-enhanced Spin-polarized \overline{H} beam $\mu_{\overline{p}}$ determination ppm or better

Magnetic & electric fields configurations in the MRT

Magnetic & Electric fields configurations in the MRT

H⁺ synthesis in the cusp trap?

 \overline{H} + e⁺ + e⁺ \rightarrow \overline{H} ⁺ + e⁺? (Interaction time of ~10sec)

J.Walz, et al., General relativity and gravitation 36(2004)561

Cusp Magnet + Cold Bore

Collision of neutral_molecular beams with trapped p

Collision in meV range: ☆Langevin cross section ☆high res. X-ray spec.

Study of nuclear surface structure of unstable nuclei

Our plan at FLAIR

Fig. 57: A schematic layout of F9 hall for spin-polarized antihydrogen experiment.

5.Summary

Trapping and manipulation of e^+ , p. unstable nuclei, highly charged ions

 $p: 10^{6}/AD$ shot monoenergetic ultraslow p beam of 10-500eV

efficient accumulation of et in UHV condition

collision dynamics with "heavy" electron <u>spin-polarized</u> `H beam and CPT symmetry test pRI production and surface structure of unstable nuclei

Collaborators

p:

```
Present members: N.Kuroda, H.A.Torii, M.Shibata, Y.Nagata,
M.Hori, A.Mohri, D.Horvath, J.Eades, K.Komaki
New Members: H.Saitoh, Y.Enomoto, K.Ogata
Previous Members: D.Barna, H.Higaki, 2.Wang, K.Yoshiki Franzen,
S.Yoneda, M.Inoue, B.Juhasz
```

e†:

Present Members: N.Oshima, M.Tarek, A.Mohri, K.Komaki, J.Babaud Previous Members: M.Niigaki, T.M.Kojima

Slow RI:

Present Members: M.Wada, Y.Ishida, T.Nakamura, A.Takamine