28th March 2000

CERN Search Combinations

W. J. Murray RAL

Talk overview

- CERN groups and timescales
- Comparison of Higgs and SUSY groups
- Janot-Lediberder
- Conclusion

Why are there CERN groups?

(My personal opinion)

- LEP 1 groups seen to be very useful
 - e.g. Electroweak and b-physics
- Desire to make best use of the machine
 - Many searches benefit from quadruple lumionsity
- Emergence of ALEPH 4-jet `problem'
- Political desire for CERN to be seen to be a collaboration

CERN timeline

- LEP Energy raised to WW threshold 1996
- SUSY and Higgs groups est. end 1996
 - 4 experiments and theory division
- Results regularly sent to conferences
- Procedures still being improved Mar 2000
 - SUSY W.G. Meeting on 27th on common systematics!
- Higgs and SUSY groups use different techniques!
- Fast results for run decision 20th July 2000

Comparison of the Problem

Higgs Group	SUSY Group
3 Channels	17 channels:
H, hA, H⁺H⁻	Stop, Sbottom, neutralino,
	selectron, smoun, stau, stable,
	single photon, double photon etc.
LR based limits	Limits independent of signal
appropriate	amplitude needed
Worth maximizing	Small performance penalty
performance for	acceptable.
those channels	

Why not just put a limit on the cross-section ?

- The LEP energy constantly changes
- Combining energies needs SOME model
 - at what energy do you quote the crosssection limit?
 - Are limits at various energies equally useful? SUSY w.g. usually yes, Higgs no.
- A common models is to use an average energy but be careful near threshold.

LR or non-LR method?

- Likelihood ratio is OPTIMAL. Use it if you can! =>OK for Higgs
- By definition it REQUIRES a complete model =>Annoying for SUSY
- SUSY w.g. introduce variation, to remove cross-section changes with energy.
 - Small loss of power, much more practical
 - Kinematically incompatible data removed

Data used in Higgs W.G.

- Each experiment provides:
 - Events seen at each energy
 - Each event with 1 or 2D information, e.g. mass, b-tag
 - Distributions expected in the above for background at each energy
 - Software to calculate expected signal distribution for any Higgs mass
- 6 energies * 5 channels * 4 experiments = 120plots for SM!

Data used in SUSY W.G.

- Each experiment provides:
 - Matrix of events seen at each energy compatible with given (M_c^0, M_Y)
 - Distributions expected in the above for background at each energy
 - Subtractable and non-subtractable
 - Signal efficiencies at each point
- 8 energies * 4 experiments = 24 sets of matrices for each channel

Limits

 CL_s & Obratsov (Bayes with constant prior in s) compared.

– very similar but better limits from CL_s

- CL_s used to set limits, as preferred method, others occasionally.
- Updating a limit needs all old data.

Discoveries!

CL_b used as `discovery indicator'

• LEP 2 doesn't have any discoveries.

- Aleph 4-jet excess `closest thing'
 - Very unlikely excess in 1 experiment
 - Exchange of event 4-vectors, real and simulated, intensive detector studies, *no conclusion*
 - It did not appear in a second run

Janot - LeDiberder combination

- CERN/PPE-97-053 `Combining Limits'
- Technique for combining CL's directly
 - No recourse to the selected events
 - Much less information needed
 - Almost optimal
 - CANNOT MAKE A DISCOVERY
- Useful for the PDG?

Janot - LeDiberder part II

- Democratic prescription:
 - Uses only the measured CL_s to produce combined one
 - Dangerous is experimental sensitivites differ
- Elitist prescription
 - Needs CL, <CL>, background rate
 - <CL> background ensemble must be calculated
 - Combined CL better ON AVERAGE than individual ones
 - Optimal if background follows their assumed shape.
 - Limits are safe *Frequentist* limits
- Good way to combine limits if you do not have the details of the data.

Summary

- Co-operation essential to confirm discoveries
- Co-operation sometimes hard
- LEP minds are concentrated by the decision to switch off (or extend running) in July

.....wish us luck!

