27th March 2000

# CERN Higgs searches: CL<sub>s</sub>

W. J. Murray RAL

## Talk overview

- Definition of CL<sub>s</sub>
- Application in Higgs search
- What about Discovery?
- Nuisance Parameters
- Techniques for calculation
- Conclusion



## Requirements of a CL

- Initially seen from a frequentist perspective
- Modified by Bayesian interpretation

Need to be acceptable to community
 So must satisfy BOTH schools

Nb Powerpoint thinks both frequentist and Bayesian are spelt wrong..



# Definition of CL<sub>b</sub> and CL<sub>sb</sub>

#### • Frequentist Definition:

$$CL_b \equiv P(L \leq L_{obs})$$

**Background ensemble** 

$$CL_{sb} \equiv P(L \leq L_{obs})$$

Signal +Back ensemble

- 2 hypotheses considered, and only two!
- Ordering automatically 1 sided (in likelihood)



## Definition of CL<sub>s</sub>

CL<sub>s</sub> is a safer CL<sub>sb</sub>

$$CL_{s} \equiv CL_{sb} / CL_{b}$$

- Used only to Exclude a signal
  - CL<sub>sb</sub> was frequentist CL, CL<sub>s</sub> is *LARGER* so
     conservative Frequentist-safe
  - Asks 'How much more unlikely from s than b?'

like LR: 
$$\frac{L(s+b)}{L(b)} \approx \frac{CL_{sb}}{CL_b}$$
 - Bayes-like



# Definition of CL<sub>b</sub>

CL<sub>b</sub> is a safer CL<sub>b</sub>

$$1 - CL_{b'} \equiv (1 - CL_{sb})/(1 - CL_b)$$

- Used only to Discover a signal
  - CL<sub>b</sub> was frequentist CL, CL<sub>b</sub>' is SMALLER so
     conservative Frequentist-safe
  - Asks `How much more unlikely from b than s?'
     like LR: 1 (b) 1 CI Bayes-like

$$\frac{L(b)}{L(s+b)} \approx \frac{1 - CL_{sb}}{1 - CL_{b}}$$
 - Bayes-like



## Typical PDF distribution:

typical.eps
Creator:
HIGZ Version 1.25/04
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Low ll: Exclusion

medium ll: no conclusion

high ll: Discovery

Cl<sub>s</sub> always increase by construction

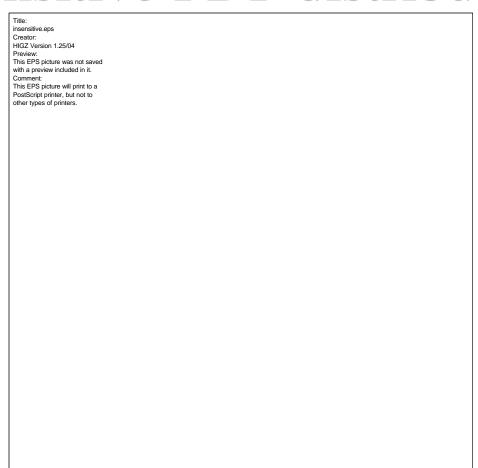
 $\operatorname{CL}_{\mathrm{s}}$  and

CL<sub>sb</sub> similar



## Clear PDF distribution:

If separation
was much
larger we
would not use
statistics


Treatment of results outside either remains a potential problem!

Title: clear.eps Creator: HIGZ Version 1.25/04 Preview: This EPS picture was not saved with a preview included in it. This EPS picture will print to a PostScript printer, but not to other types of printers.

CLs and CLsb identical



## Insensitive PDF distribution:



CL<sub>s</sub> and CL<sub>sb</sub> distinctly different



### Useless PDF distribution:

This is the case where  $CL_{sb}$  feels wrong

Rev. Bayes!

useless.eps
Creator:
HIGZ Version 1.25/04
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

CL<sub>sb</sub> allows exclusion.
CL<sub>s</sub> does not.



### Clear Poisson Distribution:

# 3 events observed

Title:
clear\_c.eps
Creator:
HIGZ Version 1.25/04
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

# Signal of 10 excluded



## Typical Poisson Distribution:

#### Signal of 4

typical\_c.eps Creator: HIGZ Version 1.25/04 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

For 3 seen,

CL<sub>s</sub> is

always

\*twice CL<sub>sb</sub>



### **Useless Poisson Distribution:**

Intle:
useless c.eps
Creator:
HIGZ Version 1.25/04
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Nb:

With CL<sub>s</sub>, 0 observed is always excluded at

e<sup>-s</sup>



#### How did we find this definition?

• It was an extension of the RPP `96:

$$1 - e = 1 - \frac{e^{-(\mathbf{m}_B + N)} \sum_{n=0}^{n_0} \frac{(\mathbf{m}_B + N)^n}{n!}}{e^{-\mathbf{m}_B} \sum_{n=0}^{n_0} \mathbf{m}_B^n}$$

This is the same as CL<sub>s</sub> for Poisson



## Why not Feldmann & Cousins?

#### • There are drawbacks to F+C:

- Limits below e<sup>-s</sup> when 0 events seen
- Needs more information than we have! (Some experiments treat each Higgs mass as a separate search, and return `independent' results)
- Limit can benefit from fluctuations elsewhere
- It has advantages
  - Solves the look-elsewhere
- Not clear whether automatic 2-sided limits are an advantage



## Summary of CL<sub>s</sub>

- Gives overcoverage for classical limits
- Outperforms the Bayesian integral with a flat prior in signal rate
- Deontologically acceptable i.e. does not exclude where no discrimination

(C) P. Janot

Does not just tell us whether it is raining



## Application in Higgs search

How powerful are the techniques?

Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

cl\_method\_signal.eps Creator: HIGZ Version 1.25/04

 Higgs rate v mass (Autumn 99 LEP)



### Observed Confidence Levels

LR is same as
R value
proposed by
d'Agostini

cl\_method\_observed.eps Creator: HIGZ Version 1.25/04 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

CL<sub>sb</sub> and CL<sub>s</sub> converge for low masses due to fluctuation



## **Expected Confidence Levels**

What does expected mean?

#### •Mean

Has normally been used by us.

#### •Median

No dependence on metric

Careful: Both are used here!

**Expected limits:** 

CL<sub>s</sub> .3GeV below CL<sub>sh</sub>

LR: 1GeV below CL<sub>sb</sub>



## Probability of Exclusion

Define exclusion as CLs<0.05

Probability of false exclusion should be 5% - but is less

Significant overcoverage

False exclusion rate is always 5% of the true exclusion rate

Title:
cl\_method\_fake\_e.eps
Creator:
HIGZ Version 1,25/04
Preview:
This EPS picture was not saved with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to other types of printers.



## What about Discovery?

- CL<sub>b</sub> is the accepted indicator (CL<sub>b</sub>' under study)
- Require  $5s => 1-CL_b < 5*10^{-7}$
- No real allowance for flip-flopping
  - Can (will!) ALWAYS quote limit
  - flip-flop probability VERY small



#### Look-elsewhere effect

- •Can discover at ANY mass raises probability of fake discovery above 5\*10<sup>-7</sup>
- •Results are each mass are correlated
- But: What mass range should be checked?
  - •Last years limit to sensitivity limit?
  - •Full range scanned? (But that is arbitrary!)
- •No RIGHT answer We use a down-weighting factor, from MC experiments; 4 in SM case.



## **Nuisance Parameters**

See Slides from T. Junk



## Techniques for Calculation

- Three different methods used:
  - Monte Carlo calculation. (A.Read)
     Flexible but slow. Tricks help.
  - Analytic folding (P.Bock)
    - event by event: Good for low event nos.
    - bin by bin: Good for low bin nos.
  - FFT approach: (S.Nielsen) Fastest for large problems



#### Monte Carlo calculation

- Used for current LEP limits
- Very easy to add all sorts of complications by varying ensemble
- Takes several days CPU for MSSM limits.

 Use LR=(s+b)/b to enhance effective statistics



#### **Conclusions:**

- CL<sub>s</sub> is well-tested practical solution.
- Safe for Classical statistician
- Bayes-like properties for a Bayesian
- Removes a few hundred MeV w.r.t. to optimal Frequentist CL<sub>sb</sub>
- No Higgs found yet (m<sub>H</sub>>107.7GeV)

