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The Problem

e Observation: see Kk events

 Poisson variable:
— expected mean is s+b  (signal + background)
—-$ = L0 |

» efficiency X Luminosity X cross section

— “cross section > o really cross section X branching ratio

» Calculate U, 95% upper limit on ¢
— function of k, b, and uncertainties 3y, 8¢, 8 4

— focus on upper limits: searches

Some typical cases for
Calculation of 95% Upper Limits

k=0, b=3 The Karmen Problem
k=3, b=3 Standard Model Rules Again
k=10, b=3 The Levitation of Gordy Kane?

“seeing no excess, we proceed to
set an upper limit...”



The 95% Solution:

Reverend Bayes to the Rescue
Why? He appeals to our theoretical side

from statistics, we want “the answer”; as close as it gets?

Why? to handle nuisance parameters

*

Name your poison

Tincture of Bayes

Cousins and Highland treatment:
+ Frequentist signals + Bayesian nuisance

Bayes Full Strength
The D@ nostrum:

Both signal and nuisance parameters Bayesian

Cousins & Highland

Trying to make everyone happy makes no one happy.
Not even Bob. :

Treat signal in Frequentist fashion (counts)
Bayesian treatment of nuisance parameters

modifies probabilities entering signal distribution
“weighted average” over degree of belief in unknown parameters
Nota Bene
This is how every physicist I know instinctively
approaches this problem. It’s the ‘“natural” way,
particularly when writing a Monte Carlo



C+H Coverage Monte Carlo:
b=0; sensitivity uncertainty

« Fix true sensitivity, o in outer loop

sweep through parameter space

find % of experiments with limits including O at each point

» do MC experiments at each value

pick observed value for sensitivity, k
calculate limit based on these

see if limit covers true value of G

Coverage Probability for $0% Confidence Level for Sigma=0.25

0.975
0.95

0.925

0.875




Results for C+H Coverage

Fails to cover for large cross section and
small efficiency.

Not too surprising
a count limit sY could be due to any value of
o since sU = 4o
if sensitivity small, would need a huge oV

Remember, limit on ¢ must be valid for

any sensitivity--no matter how improbable
coverage handles statistical fluctuations only

U = Bayes 95% Upper Limits
Credible Interval

k = number of events observed
b = expected background
Defined by integral on posterior probability
Depends on prior probability for signal
how to express that we don’t know if it exists,
but would be willing to believe it does?

This is the Faustian part of the bargain!
Posterior: compromise likelihood with prior



Expected coverage of Bayesian intervals

¢ Theorem:<coverage> = 95% for Bayes 95% interval
< > = average over (possible) true values weighted by prior

» Frequentist definition is minimum coverage for
any value of parameter (especially the true one!)

not average coverage
¢ Classic tech support: precise, plausible, misleading
if true for Poisson, why systematically under cover?

Because k small is infinitely small part of [0,ec]

but works beautifully for binomial (finite range)
= coverage varies with parameter but average is right on
— “obvicus” if you do it with flat prior in parameter

The sadness of Fred James:
JIM, HAVE YOU GONE ASTRAY?

» ] am indeed seen to worship at
Reverend Bayes’ establishment

 I’m not a fully baptized member
— sorry Harrison, not that you haven’t tried!

* A skeptical inquirer...or a reluctant convert?

Attraction of treating systematics is great
Is accepting a Prior (he’s uninformative!) 100 high a price?

A solution for the tepid?
Can we substitute convention for conviction?
Either one should be examined for its consequences!




Candidate Signal Priors

Flat up to maximum M (e.g. Gyo1)
— (our recommendation--but not invariant!)
— a convention for BR X cross section
1/\s (Jeffreys: reparameterization invariant)
relatively popular “default” prior

1/s (one of Jeffreys’ recommendations)
get expected posterior mean
limit invariant under power transformation

e-as

not singular at s=0
Bayes for combining with k=0 prev expt,

a = relative sensitivity to this experiment

Piko = la, 1) % Plelf) o

Plolks =0.1) = 7558, = Olp, 1) x Ploll) ~ fdo

(A1}

whmﬁ=caq£nmdwmm(#:=l. Cancelling copstents, and changing the
integraticn variahhe to & , we find

Plolt = I} = Loz~ (A2)

Now considue combining this sxpariment with 2 sohssquent wxperimect, with diffwent, hat
sguin purfectly known, officieccy, lumincsity, and background ¢, £,b. The natural Baynsian
method is to uss the postarior for o from the first experiment as the prior for the second
wxpuriment. For the second exparimact we writs the posterior probahility for o, with &
obsarvad events @

Plol 1} o Plto, ) % Piott) = = g (A9

using 5 = oe£. Now we writs & in tamms of & hy recognizing

alo _ &lo
B =aq&=a€£:c—=;E = a8 (Ad)

Ploik,n) x o~ L"’*;- ol 'L"":ﬂ-' (AS)



——k=10, b=3

— k=3, b=3

—k=0.=3

Bayeslan Upper Limit Pricr Dependence
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P, power in prior

Power Family sP Results (8,=0)

The flat prior is not “special” (stationary)

But if b=0, B
but lower 1

ayes UL = Frequentist UL — coverage
imit would differ

1Ns gives smaller limit (more weight to s=0)
_ less coverage than flat (though converges for k—eo)
1/s gives you 0 upper limit if b > 0
too prejudiced towards 0 signal!

More p dependence for k=0 than k=3 or k=10
flat (p=0) to 1/Vs gives 36%, 26% , 6%

data able to o

verwhelm prior (b=3)



Upper Limit

Exp, k=0, b=3

Bayeslan 95% Upper Limlt for k=0, b=3

Dependence on Prior
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Bayesian 85% Upper Limit
Dependence on Exponential Prior

||||||1r|1.|x(x||/||

Upper Lirmit

&, coafiicient in exponential axp (as)

Exponential Family Results
'(8b=0)

Peak at s=0 pulls limit lower than flat prior

effects larger than 1~s vs. flat: equivalent to data

e”S gives you 1/2 the limit of flat (a=0) for k=0:
combined 2 equal experiments

biggest fractional effects on k=10 (=1/2.5)

because disagrees with previous k=0 measurement

opposite tendency of power family
k=10 least dependent on power
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Dependence on Efficiency Informative Prior
(representation of systematics)

Input: estimated efficiency and uncertainty
N= uncertainty/estimate
“efficiency” is really €& (a nuisance parameter)

Consider forms for efficiency prior
Expect: less fractional dependence on form of prior
= than on signal prior form
» because of the constraint of the input: informative

study using flat prior for cross section, 66=0
Warning: s=¢&£x o (multiplicative form)

limit in s could mean low efficiency or high &

Expressing <€>10¢
n = de/<e>

“obvious” Truncated Gaussian (Normal)
model for additive errors
we recommend(ed)
truncate so efficiency =0
Lognormal (Gaussian in Ln € )
model for multiplicative errors
Gamma (Bayes conjugate prior)
flat prior + estimate of Poisson variable
Beta (Bayes Conjugate prior)
flat prior + estimate of Binomial variable
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For the purposes of this ssetion, it is cotvenient to define a sealed sensitivity variable

o =elfel (6.9}

where ¢ = 1. In this spirit, we will nse 9 to parameteriz the informative prior for o,
rather than adjusting the posterior mean and rms of this distributian to precisely match
the estimates. Without loas of geperality, we can further consider nnit expected sensitivity
if =1, 50 that 4 = Leo = Lége = g od we can easily compare pumerical values of the
npper limits with otber resnlts. In the nsual fashion, the posterior probability for the cross

section will be given by

Ploik) x P(s) [ doP(kida+5)P(¢ln) (6.10)
1 1{e6—1\°

TGanaa{g|n) = ﬁ“ -3 (_n-) (6.11)

{Nor{gn) = 3;—“;’ mp w%{h o/ (5.12)

Gumma(g|n) o< 97 e ~H (6.13)

Beta(g;a,b) = EE:)';:})EHQ - (6-14)

The estimate efficiepcy and unoertainty are assumed to have come from = K{N, the
fraction of stocesses, and 6, = ¢ = 4/fl1— &}/N. From these, the parameters can he
decuced by

N = 81— /82 = (1 )/ (°%) (6.15)
and (note the canvergence to the Poisson ease for £ — 0)
K=iN=(1-8/F (6.16)
resulting in

a=1+K={1-d/7, (6.17)

b=1+N - K=1+(1/i- D/(1-&/e (6.18)
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95% Credible limit for various fractional resolution
10
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Results for Truncated Gaussian

* A bad choice, especially if 1 > .2 or so

* cutoff-dependent (MC: 4 sigma; calc .1<€>)
Otherwise depends on M, range of prior for ¢

* MC of course cranks out some answer
— dependent on luck, and cutoffs of generators

* WHY!? (same problem as with Coverage)
— Can’t set limit if possibility of no sensitivity
Probability of €=0 always finite for a truncated Gaussian
with flat prior in &, gives long tail in & posterior

Bayes takes this literally:
U reflects heavy weighting of large cross section!
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Normalized 95% Credible Limit

Nommalized 95% Credible Limit
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Normalized 95% Credible Limit

Normalized 95% Credible Limit
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Results for alternatives
ALL have P(€=0) = 0 naturally

Lognormal, beta, and gamma
not very different (as expected--informative)
opinion: comparable to “choice of ensemble”

Not a Huge effect:
UM)U0) < 14+n upton~1/3

* Lognormal, Gamma can be expressed as
efficiency scaled to 1.0

(so can Gaussian)

beta requires absolute scale (1-g)

Truncated Gaussian

irMormative Prior ¢ 3

14
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Results, compared with
C+H (mixed Frequentist-Bayes)

* Truncated Gaussian well-behaved for C+H
no flat prior to compound with P(e=0) > 0 ?
Fairly close to Bayes Lognormal

* C+H Limits depend on form of

informative prior MORE than Bayes
Lognormal, gamma C+H lower than Bayes!
* C+H limits lower than Bayes limits

Which is “better”? coverage study?
C+H Gaussian undercovers for small € (—large ©)
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Dependence on
Background Uncertainty

* Use flat prior, no efficiency uncertainty

* Use truncated Gaussian to represent <b>%6b
But isn’t that a disaster? No--
additive is very different from multiplicative

€40 +b
behavior at b=0 not special

Bayeslan Upper Limit Dependence on Background Uncertainty
Truncaed Gaussian Background Model
(k=3, b=3})

Upper Limit

dbvb
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Background Prior'Results

* Result: very mild dependence on +5v/b
< 10% change up to 8u/b = .66

most sensitive for k=3, b=3; k=1, b=3
absolute maximum: set b=0 20-40% typically
set b=0: force Frequentist coverage?

* No need to consider more complex models

Paper in preparation

* With Harrison Prosper and Marc Paterno
coverage calculation: more D@ help

* Thanks to Louis Lyons for the prod to finish

— and a 2nd chance at understanding all this
* only 1 hour jet lag, maybe I'll be awake

» Poisson, Fisher....
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Summary
(out of things to say)

Cases studied: b=3, k=0,3,10 mostly
studies changed one thing at a time
» All Bayes upper limits seen to
monotonically increase with uncertainties
(couldn’t quite prove:
Goedel’s Theorem for Dumnmies)
Hello PDG/RPP
nuisance effects 15% or so--please advise us

ignoring them gives too-optimistic limits

Signal Prior Summary

Flat signal prior a convention
b=0, 1=0 matches Frequentist upper limit
we still recommend it
careful it’s not normalized
flat vs 1/¥s matters at 30% level when setting limits
So publish what you did!
Enough info to deduce NV= oU/<e#> at one point

can see if method or results differ
how about posting limits programs on web?

exponential family actually is a strong opinion (=data)
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Informative Prior Summary

Can’t set limit if possibility of no sensitivity
* C+H mixed prescription doesn’t cover

— how well does Bayes do? (“better”?)

* Efficiency informative prior matters in Bayesian
at a level of 10% differences if you avoid Gaussian
Prefer Lognormal over Truncated Gaussian

Keep uncertainty under 30% (large, ill-defined!)

* limit grows 20-30% for 30% fractional error in efficiency
+ growth worse than quadratic

Bayesian upper limits larger than C+H; more similar
Publish what you did

* Background uncertainty weaker effect than efficiency

— typically < 15% even at Sb/b=1

Is 20% difference in limits

worth a religious war ...?7
(less of a problem if we actually find something!)

* Flat 6 Prior broadly useful in counting expts?
* Set limits on visible cross section cU(B)
signal MC for € (0)
stays as close as we can get to raw counts
here is where scheme-dependence hits; it’s not too bad. ..
resolution corrections, prior dependence ~ 20-30% or less
* Interpret exclusion limits for ©:
compare oV to o(0)
IF steep parameter dependence: less scheme-dependence
in limits for 6 than cV(0)...
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