

Photon Searches at the Tevatron

Photon Triggers and Selections

Photon triggers

Et > 25, iso<0.2, had/em<0.2 (prescaled at high-lum) Et > 30, iso<0.2, had/em<0.2

<u>Central Cuts</u> (η <1.1)

had/EM <0.04 calorimeter Iso, cone $0.2 \rightarrow 0.4$ /cone 0.2 < 0.07good transverse shower profile track isolation, cone $0.05 \rightarrow 0.4 < 2$ GeV no good, high-pt track (anti-electron) search for electron hits along a road

All analyses use $Z \rightarrow ee$ to study/correct ID efficiencies Have started using $Z\gamma$ sample to check efficiencies!!

Road Technique

Method

- seed a track from cal cluster and event vertex
- search for hits along the expected arc

Phoenix Tracking

- finding forward electrons
- rejecting electrons (lost due to brem)

Hits on a Road

- rejecting electrons (lost due to tracking eff)

R-S Graviton Search

Model

- Randall-Sundrum Gravitons - Extra dimension has warped metric - suppresses gravity - S-channel Graviton couples with k/Mpl, yields $e^+e^-, \mu^+\mu^-, \gamma\gamma, \dots$ peaks at high-mass Analysis
- 1.1 fb⁻¹
- 2 central EM objects ($|\eta| < 1.1$)
- Et>25 GeV
- allows electrons or photons (better total acceptance)

- this search would be sensitive to any narrow peak from dielectrons and/or diphotons

January 10, 2007

Aspen 2007

5

R-S Graviton Limits

Backgrounds

D.Y. electron and diphotons from Pythia
shape of fakes from almost-EM objects
normalize in Z region

<u>Results</u>

- sliding mass window
- k-factor 1.34

- M>865 GeV for k/M=0.1

Photon Triggers and Selections

DiPhoton triggers

 $2 \times \text{Et} > 12$, w/cal iso $2 \times \text{Et} > 18$, wo/cal iso

Photon triggers

Et > 25, w/cal iso Et > 50, wo/cal iso

plus ... photon+muon, photon+b, photon+2jet, triphoton

<u>Central Cuts</u> (η <1.0)

had/EM <0.055 calorimeter Iso, cone 0.4 < 2 GeV cluster in shower max, good χ^2 small leading track Pt < 1 GeV track isolation, cone 0.4 < 2 GeV second Sh.Max. cluster Et < 2 to 3 GeV

Forward Cuts (1.2< η <2.8) had/EM <0.05 calorimeter Iso, cone 0.4 < 2 GeV cluster in shower max, good shape small leading track Pt < 1 GeV track isolation, cone 0.4 < 2 GeV tower shower shape, good χ^2

MEt search adds anti-cosmic cuts:

EM TDC times (when available), jet topology, unattached muon stubs All analyses use $Z \rightarrow$ ee and minbias to study/correct ID efficiencies

January 10, 2007

Aspen 2007

Search for Diphoton Peaks

- 2 central-central or central-forward photons
- Fit spectra to DiPhox and exponentials
- for $k/M_{pl}=0.1$, M(G)>850 GeV
- combined with e^+e^- RS search result: M(G)>875 GeV

Fake Rate Technique

<u>e →γ fake rate</u>

Compare:
Z peak in ee
Z peak in eγ
take Et dependence from Monte Carlo

GMSB Diphoton and Met

Model

- GMSB decays of $\chi^0_1 \rightarrow \gamma G$
- pair production: γγMEtX <u>Sample</u>
- 760 pb⁻¹
- 2 photons, Et>25, lηl<1.1 <u>Remove fake MEt</u>
- MEt not opposite the largest jet
- photon preshwr points to vertex^{10⁻²0} Background from jets
- Two loose photons sample
- Normalize to low MEt

Background from W→<u>e</u>v

- Identify ey MEt sample
- Scale by prob for e to fake γ

GMSB Diphoton and Met

Results

- MEt>45 GeV signal region QCD 1.8 ± 0.7 <u>Wy 0.28 ± 0.06 </u> 2.1 ± 0.7 Observed 4

- $\chi_{2}^{0}\chi_{1}^{\pm}$ and $\chi_{1}^{\pm}\chi_{1}^{\pm}\chi_{1}^{\pm}$ production
- K-factor ~1.2
- Limit: $M(\chi^{\pm}_{1})>220 \text{ GeV}$

Delayed Photon Search

<u>Model</u>

- GMSB decays of $\chi_1^0 \rightarrow \gamma G$ can occur with finite lifetime <u>Technique</u>

- measurement (σ =0.6ns) of arrival time of photons in EM calorimeter

Sample

- γ Et>35 GeV, MEt> 40 GeV and jet> 35 GeV, 570 pb⁻¹

Backgrounds

- prompt
- cosmics causing EM clusters
- halo muons causing EM clusters

January 10, 2007

Delayed Photon Search

January 10, 2007

Some Photon Models

SUSY	
$\chi^0_1 \rightarrow \gamma G$	γγ MEt, displaced γX, γγ jMEt, eγMEt, μγMEt γbMEt,
$\chi^0_2 \rightarrow \gamma \chi^0_1$	ybjMEt, ybcMEt, yjjMEt, yeeMEt, yµµMEt,yyeeMEt,
	γγμμMEt, γ Met, jjγMEt
<u>Technicolor</u>	
$\omega_{\mathrm{T}}, \rho_{\mathrm{T}\pi\mathrm{T}} \rightarrow \gamma \pi_{\mathrm{T}}$	γbb, γjj, γtt, γγγ, eeγγ,
$\pi_T \rightarrow \gamma \gamma$	μμγγ, eeγγ Met, μμγγ Met
<u>Compositness</u>	
$X^* \rightarrow \gamma X$	eeγ, eeγγ, μμγ, μμγγ, jjγ, bbγ, jjγγ, bbγγ
<u>LED</u>	
G→γγ	$(\gamma\gamma), \gamma\gamma, \gamma Met$
<u>Higgs</u>	
Н→үү, А→үү	γγ, eeγ, μμγ, evγγ, μvγγ, jjγγ, γγγγ
<u>4th gen</u>	
b'→γb,	γγbb, eeγbb, μμγbb, jjγγbb

May be more efficient for experimentalists to survey final states with variations of nominal cuts...

Search in Diphotons and Met

Sample

- 1.2 fb⁻¹
- Two central photons with Et>13

Remove fake MEt

- remove jets along MEt
 use lowest MEt vertex
 Remove Ewk
- W→e→γ by brem rejected by Phoenix Remove non-collision
- EM timing
- no extra muon stubs

Ht = scalar sum of Et from photons, leptons, jets, and MEt

Search in Diphotons and Met

QCD background

- Shapes modeled from jet control samples

Ewk background

- $e+\gamma$ sample times $e \rightarrow \gamma$ fake rate **Non-Collision background**

-no-vertex and out-of-time control samples

Total background, MEt>50GeV: 1.6 ± 0.3, 4 observed

Search for Diphotons and Leptons

- Same diphotons
- 1.0 to 1.1fb⁻¹
- central/forward e>20 GeV or central/forward µ>20 GeV

Backgrounds:

- Ewk *l*γγ (MadGraph)

A denominator

- times fake rate for:
- jets faking leptons
- jets faking photons
- electrons faking photons

Ht [GeV]

Before applying Phoenix rejection			
Source	electron	muon	
$Z\gamma\gamma$	$0.904 \pm 0.023 \pm 0.083$	$0.552 \pm 0.017 \pm 0.050$	
$W\gamma\gamma$	$0.170 \pm 0.012 \pm 0.016$	$0.086 \pm 0.008 \pm 0.008$	
Fake $l + \gamma \gamma$	$0.131 \pm 0.004 \pm 0.053$	$0.004 \pm 0.003 \pm 0.002$	
$l\gamma + \text{jet} \rightarrow \gamma$	$0.475 \pm 0.025 \pm 0.312$	$0.133 \pm 0.013 \pm 0.090$	
$l\gamma + e \to \gamma$	$5.140 \pm 0.340 \pm 0.584$	$0.017 \pm 0.017 \pm 0.002$	
Total	6.82 ± 0.75	0.79 ± 0.11	
Data	3	0	

Search for Triphotons

Sample

- 1155 pb⁻¹
- Start with same diphotons
- add a third central photon with Et>13 GeV

Backgrounds

S.M. Triphotons
from MadGraph: 0.8 ± 0.15 At least one fake: 1.4 ± 0.6 Total: 2.2 ± 0.6 Observed:4

January 10, 2007

Higgs Search in Triphotons

January 10, 2007

Aspen 2007

Triphoton Background Technique

 $\begin{array}{l} \hline \textbf{Define fake rate/efficiency} \\ \epsilon_b = \text{prob } j \rightarrow \gamma = 0.043 \pm 0.004 \\ \epsilon_s = \text{prob } \gamma \rightarrow \gamma = 0.75 \pm 0.05 \end{array}$

Define matrices:

- True $\mathbf{n} = (n_{\gamma\gamma\gamma} n_{\gamma\gamma j} n_{\gamma j j} n_{j j j})$
- Meas $\mathbf{N} = (N_{\gamma\gamma\gamma} N_{\gamma\gamma j} N_{\gamma j j} N_{j j j})$ (here "j" is a EM-like object) - matrix eq. $\mathbf{n} = \mathbf{E} \mathbf{N}$

$$\mathbf{E} = \begin{pmatrix} \mathbf{\varepsilon}_s^3 & \mathbf{\varepsilon}_s^2 \mathbf{\varepsilon}_b & \mathbf{\varepsilon}_s \mathbf{\varepsilon}_b^2 & \mathbf{\varepsilon}_b^3 \\ 3(1-\mathbf{\varepsilon}_s)\mathbf{\varepsilon}_s^2 & \mathbf{\varepsilon}_s^2(1-\mathbf{\varepsilon}_b) + 2(1-\mathbf{\varepsilon}_s)\mathbf{\varepsilon}_s\mathbf{\varepsilon}_b & \mathbf{\varepsilon}_b^2(1-\mathbf{\varepsilon}_s) + 2(1-\mathbf{\varepsilon}_b)\mathbf{\varepsilon}_b\mathbf{\varepsilon}_s & 3(1-\mathbf{\varepsilon}_b)\mathbf{\varepsilon}_b^2 \\ 3(1-\mathbf{\varepsilon}_s)^2\mathbf{\varepsilon}_s & \mathbf{\varepsilon}_b(1-\mathbf{\varepsilon}_s)^2 + 2(1-\mathbf{\varepsilon}_s)(1-\mathbf{\varepsilon}_b)\mathbf{\varepsilon}_s & \mathbf{\varepsilon}_s(1-\mathbf{\varepsilon}_b)^2 + 2(1-\mathbf{\varepsilon}_b)(1-\mathbf{\varepsilon}_s)\mathbf{\varepsilon}_b & 3(1-\mathbf{\varepsilon}_b)^2\mathbf{\varepsilon}_b \\ (1-\mathbf{\varepsilon}_s)^3 & (1-\mathbf{\varepsilon}_s)^2(1-\mathbf{\varepsilon}_b) & (1-\mathbf{\varepsilon}_s)(1-\mathbf{\varepsilon}_b)^2 & (1-\mathbf{\varepsilon}_b)^3 \end{pmatrix}$$

- Invert to solve for true event counts

Higgs Search in Triphotons

Background

- before final $Pt(\gamma\gamma\gamma)$ cut
- QCD = 0.72 \pm 0.15
- Direct γγγ derived from
 γγ with a similar matrix,
 and Pythia γγγ/γγ rate:
 2.73±0.55
- W/Z γ and $\gamma\gamma$ is small
- Total: 3.5 ± 0.6 Observed: 5 events

- mass of all pairs

Higgs Search in Triphotons

Limits

- After the final Pt cut: 1.1 ± 0.2 expected, 0 observed
- Higgs mass greater than 44 to 80 GeV, depending on H^\pm mass and $tan\beta$

Search for Lepton+Photon+X

- In Run I, in $\mu\gamma$ MEt, expected 4 and observed 11
- Repeat the Run I analysis, so kinematics are completely a priori

Sample

- 930 pb⁻¹
- Require:
 - tight central electron or muon, Et (Pt)>25 GeV
 - ♦ central photon, Et>25 GeV
- Look for
 - More Photons
 - Loose central or plug electron
 - Loose central muons
 - $\bullet MEt > 25 \text{ GeV}$

January 10, 2007

Backgrounds

- W/Zγ, W/Zγγ Baur and MadGraph Monte Carlo
- $e \rightarrow \gamma$ fake rate
- jet $\rightarrow \gamma$
 - iso method (see next)
- jet $\rightarrow l$ fake rate

Isolation Technique

- Find colorimeter
 isolation Et distribution
 1) from Z→e⁻e⁺
 2) from jets
- Fit candidates distribution to the two shapes

Search for Lepton+Photon+X

Ultimate Signature-based Search

- Several of these photon results were "signature-based"
- This idea, taken to the logical conclusion is Sleuth
- Automate searches to all high-Pt regions, all signatures
- Fit efficiencies, fake rates and k-factors to the data,
 - Apply these to a complete Monte Carlo description of the data

Distributions for photon+2jets+MEt:

January 10, 2007

Last Slide

CDF and DØ have released recently: $\gamma\gamma$ MEt $\gamma\gamma$ mass $\gamma\gamma$ e/µ $l\gamma X$ $\gamma\gamma\gamma$ delayed photons

Reasonably good coverage of photon signatures Could use: γb, γjj, γτ, γγb, γγjj, γγτ, ...

Tevatron photon program is going strong with room for more (techniques too)...