Top Quark Signature of New Physics

Lian-Tao Wang Princeton University

Work in collaboration with:

1. T. Han, R. Mahbubani, and D. Walker (to appear) 2. B. Lillie, L. Randall (to appear)

Work in progress, results preliminary.

• Conclusion

briefly, see Lisa Randall's talk.

2. NP $\rightarrow t\overline{t}, m_{t\overline{t}} \sim$ several TeV

 $\mathbf{I}^{\cdot} \ \mathsf{N} \mathbf{b}^{\longrightarrow} \underline{\mathcal{H}} \underline{\mathcal{H}}^{L}$

:seibut2 ese2 owT •

- noitevitoM
 - Outline

:noitevitoM

Naturalness:

Within the SM, largest quadratically divergent correction to Higgs mass.

VəT $\sim \Lambda \sim \gamma_{\text{partner}}$, "top partner", $\sim \Lambda \sim \gamma_{\text{top-partner}}$ version N

Signature of top partner often involve top quarks!

:noitevitoM

:leisaqs zi qoT •

.Mc heavier than other fermions in the SM.

Higher dimensional operators $\rightarrow y_t$ may not be

'yɓnouə

Something unique (only "known" to top quark)!

→ NP signals involve top quarks

Detailed measurements of the properties of the top quark, such as its mass, production and decay, provide a great deal of information.

Precision tests of the SM, signals of NP. Talks by: R. Wallny, M. Kruse, and R. Erbacher

.qoj 9lpni2. Talks by: Z. Sullivan, Y. Coadou .meht bnetrimertal challenge to discover/understand them.

Different kinematics.

Different event topology.

 $\dots + \overline{\imath} \imath \leftarrow \neg \mathsf{N}$ no supof liw I

Talks by: Z. Sullivan, Y. Coadou .got slpni2

Talks by: R. Wallny, M. Kruse, and R. Erbacher

Precision tests of the SM, signals of NP.

of information. such as its mass, production and decay, provide a great deal Detailed measurements of the properties of the top quark,

• Case 1: $t \overline{t} + \overline{t}$

Highly motivated from naturalness problem

Top partner typically has SM quantum numbers, couples to top.

Additional ingredient:

discrete symmetry \rightarrow removal of unwanted operators

EWPT, dark matter, proton decay...

... End product of NP decay is stable, e.q., A_H .

 $\longrightarrow \mathfrak{l} \ \underline{\ell} \ + \ \underline{\ell} \ \mathcal{L}$

*H. C. Cheng, I. Low, LW hep-ph/0510225 [†]T. Appelquist, H. C. Cheng and B. A. Dobrescu, hep-ph/0012100

> Pair production of \tilde{t} or $T' \longrightarrow t + LTP(A_H)$ Pair production of \tilde{t} or $T' \longrightarrow t + LTP(A_H)$

.*
slebom zępiH eltti, ni Little Higgs models*.
 $\ensuremath{\mathsf{T}}$, odd under T-parity) in Little Higgs

 $\mathtt{f} \to \mathtt{f} + \mathtt{LSP}$

1. \tilde{t} in low energy supersymmetry

:seldmex3 lesiqvT

*этьЯ

Searching for $t \ \overline{t} + \overline{y}$ sof puidones

.^{†*}zətete lenit <u>fitid</u>d :lennedd dinorbeH•

 $v \delta i \delta d b$ focus on the semi-leptonic channel $b \overline{b} \delta i \delta v$

Cleaner, isolated lepton, less jets.

We are exploring a variety of kinematical cuts.

We also want to understand the dependence of discovery reach on mass spectrum.

*P. Meade and M. Reece, hep-ph/0601124 [†]A special case has been studied: S. Matsumoto, M. M. Nojiri and D. Nomura, hepph/06122249

Our benchmark:

.VoT I = TM .'T , rontred sinoimrof

Decay: $T' \to t + A_H$.

Look for large \mathbb{R}^T

Potential backgrounds:

(.516) $t\bar{t} \rightarrow b\bar{b} + \bar{i}\bar{j} + \ell v$. (Huge rate.)

2. $t\overline{t}Z(\rightarrow \nu\nu)$ ("irreducible")

 $\exists W(\rightarrow \ell v) ppjj.$

SM background

 $\mathbb{A} + |T^{q}| = \mathbb{Z} = \mathbb{M}_{\text{eff}} = \mathbb{Z} |P_{T}| + \mathbb{F}$

Kinematical features?

Normalized to 1.

 $\Delta \phi$ between t_{hadronic} and the plane of (ℓ, b) Will only help at the level of $\mathcal{O}(1)$

SM background: summary

Dominant background: missing energy tail of $t\overline{t}$

.V9D 004 – 00E < $T\overline{3}$ could be cut away by requiring \overline{V}_T > 300 – 400 GeV.

W(o &v)bbjj typically gives $E_T < 100$ GeV, negligible after imposing cuts on E_T for $t\overline{t}Z$.

Can we do better?

We have not used the fact that we can reconstruct tops in the SM $t\overline{t}$ production.

Reconstruction

SM: $t\bar{t} \rightarrow b\bar{b} + jj + \ell\nu$ •Using p_{T} , and $m_{\nu} = 0$, m_{V} , we can solve for p_{ν} . •Remove ambiguity by $m_{t}^{had} \sim m_{t}^{lep}$, and/or minimizing $|(m_{t}^{had}, m_{t}^{lep}) - m_{t}|$. • m_{t}^{lep} will have a peak around m_{t} whose width determined by the resolution. resolution. Plot, for example, $m_{\rm fep}^{\rm t}$ on the complex plane

Reconstruction

```
.stnava Take all b\overline{b}i\overline{j}\ell+\overline{k}T events.
```

reconstruction. ●Wrong, (often) imaginary solutions → signal!.

•We will assume (wrongly) that E_T is from ν , and do the same

SM: $t\bar{t} \rightarrow b\bar{b} + jj + \ell\nu$ •Using p_T , and $m_v = 0$, m_V , we can solve for p_v . •Remove ambiguity by $m_t^{had} \sim m_t^{lep}$, and/or minimizing $|(m_t^{had}, m_t^{lep}) - m_t|$. • m_t^{lep} will have a peak around m_t whose width determined by the resolution.

Reconstruction

Signal: \sim 10-15 fb, background: 1-2 fb.

Reconstruction:

Rough estimates: require $Re(m_t) > 500$ GeV, $Im(m_t) > 200$ GeV.

M2
$$^{\prime}$$
 = 1 TeV, M_{AH} = 200 GeV SM

Reconstruction:

WS

... $The near threshold case is still difficult. Small <math>\mathbb{P}_{T}$...

Case 2: NP resonances $\rightarrow t \overline{t}^*$

top is composite — top is heavy

Other composite states (KK gluon, KK W) dominantly decay into $t\overline{t}$.

Bump searching.

*K. Agashe, A. Delgado, M. May, R. Sundrum, hep-ph/0308036

səbuəllend

- $\cdot \overline{\imath}_{t}m$ ni list prol sed $\overline{\imath}_{t}$ M2 .1
- 2. Wider resonances, $\Gamma\sim 0.2M.$ PDF distorts the shape of resonances.
- 3. EWPT typically constrains the composites to be quite heavy \geq 3TeV^{*}.
- → Very energetic tops
- Reconstruction of tops based on isolated objects is likely to fail.

.V9D 00Z > $|M - \overline{\mathfrak{H}}m|$ to wobniw oft ni :noitemillo)

$\cdot \Delta R = 0.4.$

•For $m_{t\bar{t}} > 3$ TeV, > 90%events with at least one top fully collimated.

Large fraction of events
"2-object" -like. QCD bb, jj

Find collimated tops

.*ztal ze mant tear

Some lepton isolation, hard cut on jet $p_T.\ \mbox{Lost events.}$ Discovery possible.

We should try to do better.

Grounds, necessary. Grounds, necessary.

Energetic tops \rightarrow massive jets, with some substructures[†].

How well this can be distinguished from, say massive QCD jets, demands much more detailed study.

*K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Airzi, hep-ph/0212015 †WW scattering. J. M. Butterworth, B. E. Cox and J. R. Forshaw, hep-ph/0201098

• Conclusion:

Top sector is one of the most probable place for new physics

Important to study top as part of the final states from NP, both for discovery and interpretation.

(...złść , knotdsi) $+\overline{3}$, $\overline{4}$, $\overline{4}$: Top with other stuff: $t\overline{4}$, $\overline{4}$, $\overline{4}$, $t\overline{4}$, $t\overline{4}$ (leptons, jets...)

VəT langvəz $\sim_{\overline{t}t}m$, sqot diterised Energiesi

...

Need a comprehensive top finder!

Singal vs SM $b\overline{b}$, \sqrt{N} error bar

Tq to noitonut e se noitemillo

more central. $\bullet p_T$ cut forces tops to be

Lepton Isolation

•Maybe one can go to ta smaller ΔR , or more de-