Precision Electroweak Constraints on BSM Physics

Witold Skiba, Yale U

Outline

- Precision electroweak tests of the Standard Model
- Effective operator approach to BSM physics
- Simple examples
- Little Higgs theories

Standard Model agrees with the data better than we hoped it would.

Two discrepancies larger than 2 sigma are F-B asymmetry in b production and NuTeV result for the weak angle.

> LEP Electroweak Working Group Summer '06

W mass is known with an error of 30 MeV!

The NuTeV result for the weak mixing angle can be translated into a determination of the W mass and the resulting value is lower than other measurements.

> LEP Electroweak Working Group Summer '06

I) Light SM Higgs from Z line shape and cross sections alone 2) The NuTeV result pulls the fit towards larger Higgs mass

PDG '06

Assuming no new physics !

LEP Electroweak Working Group Summer '06 Heavier Higgs boson can be consistent with the data if there are (positive) contributions to the T parameter

Erler, Langacker PDG Heavier Higgs boson can be consistent with the data if there are (positive) contributions to the T parameter

Erler, Langacker PDG

Effective operator approach

- well known for oblique corrections (S and T parameters)
- correlations between different operators crucial
- no need to compute cross sections, asymmetries, etc.
- all relevant data is distilled into the bounds on S and T

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum a_i O_i$

- The coefficients a_i encode the dependence on the masses and couplings of the heavy fields.
- -The operators O_i contain SM field only and are consistent with SM gauge symmetries and some global symmetries.

Buchmuller & Wyler, Nucl. Phys. B268 (1986) 621: all operators of dimension 6 that preserve B, L (80 such operators)

Impose flavor symmetry (U(3))⁵ Consider only well-bounded operators

[Reduced flavor symmetry, (U(2)xU(1))^5, later on.]

Impose flavor symmetry (U(3))⁵ Consider only well-bounded operators

[Reduced flavor symmetry, (U(2)xU(1))^5, later on.]

80 operators

Impose flavor symmetry (U(3))⁵ Consider only well-bounded operators [Reduced flavor symmetry, (U(2)xU(1))^5, later on.] 80 operators CP + flavor symmetry 52 some leptons or electroweak gauge fields 34 not observable $(h^{\dagger}hF_{\mu\nu}F^{\mu\nu}, (h^{\dagger}h)^3, \ldots)$ 28 poorly constrained $O_{fF} \equiv i (f \gamma^{\mu} D^{\nu} f) F_{\mu\nu}$ 21 (our basis)

e.g.
$$O_{lq}^{s} = (\overline{l}\gamma^{\mu}l) (\overline{q}\gamma_{\mu}q) \quad O_{lq}^{t} = (\overline{l}\gamma^{\mu}\sigma^{a}l) (\overline{q}\gamma_{\mu}\sigma^{a}q)$$

c) 2 fermions, Higgs, and gauge fields

(7+6)

 $O_{hq} = i(h^{\dagger}D^{\mu}h)(\overline{f}\gamma_{\mu}f) + \text{h.c.}$ e.g. $O_{hl}^{t} = i(h^{\dagger}\sigma^{a}D^{\mu}h)(\overline{f}\gamma_{\mu}\sigma^{a}f) + \text{h.c.}$

d) gauge fields only

$$O_W = \epsilon^{abc} W^{a\nu}_{\mu} W^{b\lambda}_{\nu} W^{c\mu}_{\lambda}$$

Experiments

	Standard Notation	Measurement
Atomic parity	$Q_W(Cs)$	Weak charge in Cs
violation	$Q_W(Tl)$	Weak charge in Tl
DIS	g_L^2, g_R^2	ν_{μ} -nucleon scattering from NuTeV
	$R^{ u}$	ν_{μ} -nucleon scattering from CDHS and CHARM
	κ	ν_{μ} -nucleon scattering from CCFR
	$g_V^{ u e}, g_A^{ u e}$	ν -e scattering from CHARM II
Z-pole	Γ_Z	Total Z width
	σ_h^0	e^+e^- hadronic cross section at Z pole
	$R_f^0(f = e, \mu, \tau, b, c)$	Ratios of decay rates
	$\left A_{FB}^{0,f}(f=e,\mu,\tau,b,c)\right $	Forward-backward asymmetries
	$\sin^2 \theta_{eff}^{lept}(Q_{FB})$	Hadronic charge asymmetry
	$A_f(f = e, \mu, \tau, b, c)$	Polarized asymmetries
Fermion pair	$\sigma_f(f=q,\mu,\tau)$	Total cross sections for $e^+e^- \to f\overline{f}$
production at	$A_{FB}^f(f=\mu,\tau)$	Forward-backward asymmetries for $e^+e^- \to f\overline{f}$
LEP2	$d\sigma_e/d\cos heta$	Differential cross section for $e^+e^- \rightarrow e^+e^-$
W pair	$d\sigma_W/d\cos heta$	Differential cross section for $e^+e^- \to W^+W^-$
	M_W	W mass

$$X_k^{th}(a_i) = X_k^{SM} + a_i \hat{X}_{k;i} + \mathcal{O}(a_i^2)$$

a_{WB}	9.1e4																				
a_h	2.4e4	7.9e3																			
a_{ll}^s	-78.	-51.	5.8e2																		
a_{ll}^t	-3.9e4	-1.2e4	6.7e2	2.2e4																	
a_{lq}^s	-1.4e3	-1.6e2	0.	1.5e2	2.7e3																
a_{lq}^t	-5.5e2	-1.4e2	0.	5.9e2	4.6e2	2.9e3															
a_{le}	-56.	-9.7	2.8e2	3.0e2	0.	0.	1.3e3														
a_{qe}	1.3e3	72.	0.	-1.4e2	-2.7e3	-7.4e2	0.	2.8e3													
a_{lu}	-4.0e2	3.8	0.	-1.1e2	1.2e3	-2.5e2	0.	-1.2e3	7.1e2												
a_{ld}	-6.9e2	-6.9	0.	66.	1.4e3	3.3e2	0.	-1.4e3	5.8e2	7.8e2											
a_{ee}	-59.	-42.	5.3e2	6.1e2	0.	0.	2.6e2	0.	0.	0.	4.8e2										
a_{eu}	7.8e2	1.1e2	0.	-2.1e2	-1.3e3	-9.1e2	0.	1.4e3	-4.8e2	-7.3e2	0.	8.4e2									
a_{ed}	4.2e2	-83.	0.	1.7e2	-1.3e3	5.5e2	0.	1.3e3	-7.3e2	-6.8e2	0.	4.7e2	8.8e2								
a_{hl}^s	-1.7e4	-4.1e3	1.5e2	9.7e3	-5.9e2	8.3e2	17.	3.7e2	-3.9e2	-1.6e2	1.3e2	66.	3.8e2	5.5e4							
a_{hl}^t	5.9e4	1.7e4	-43.	-3.0e4	-7.1e2	-6.6e2	-31.	6.6e2	-82.	-3.4e2	-32.	4.9e2	47.	1.5e4	6.3e4						
a_{hq}^s	-1.9e3	-1.4e3	0.	2.7e3	-2.6e3	-72.	0.	2.6e3	-1.2e3	-1.4e3	0.	1.2e3	1.4e3	-6.6e3	-8.7e3	6.0e3					
a_{hq}^t	-9.3e3	-4.5e3	0.	8.7e3	-49.	3.5e2	0.	56.	-1.4e2	-36.	0.	-64.	1.8e2	-2.4e4	-3.1e4	7.7e3	2.6e4				
a_{hu}	-6.1e2	-6.6e2	0.	1.2e3	-1.2e3	-4.	0.	1.2e3	-5.1e2	-6.9e2	0.	5.7e2	6.7e2	-3.7e3	-4.4e3	2.2e3	4.1e3	1.4e3			
a_{hd}	1.2e3	4.3e2	0.	-8.1e2	-1.4e3	-1.3e2	0.	1.4e3	-6.9e2	-7.2e2	0.	6.7e2	7.3e2	3.3e3	3.6e3	4.2e2	-2.9e3	1.6e2	1.1e3		
a_{he}	-2.8e4	-4.6e3	-1.1e2	9.0e3	4.6e2	-1.6e2	23.	-4.5e2	2.5e2	2.4e2	-96.	-1.7e2	-3.0e2	-2.5e4	-3.2e4	4.5e3	1.7e4	2.3e3 -	-2.1e3	3.2e4	
a_W	7.7	4.5	0.	-4.2	0.	0.	0.	0.	0.	0.	0.	0.	0.	6.3	-1.7	0.	0.8	0.	0.	1.4	2.6
	a_{WB}	a_h	a_{ll}^s	a_{ll}^t	a_{lq}^s	a_{lq}^t	a_{le}	a_{qe}	a_{lu}	a_{ld}	a_{ee}	a_{eu}	a_{ed}	a_{hl}^s	a_{hl}^t	a_{hq}^s	a_{hq}^t	a_{hu}	a_{hd}	a_{he}	a_W

(Times $10^{12} \, (\text{GeV})^4$

a_{WB}	9.1e4				S.7		ara	am	ete	rs											
a_h	2.4e4	7.9e3			-, .					•											
a_{ll}^s	-78.	-51.	5.8e2																		
a_{ll}^t	-3.9e4	-1.2e4	6.7e2	2.2e4																	
a_{lq}^s	-1.4e3	-1.6e2	0.	1.5e2	2.7e3																
a_{lq}^t	-5.5e2	-1.4e2	0.	5.9e2	4.6e2	2.9e3															
a_{le}	-56.	-9.7	2.8e2	3.0e2	0.	0.	1.3e3														
a_{qe}	1.3e3	72.	0.	-1.4e2	-2.7e3	-7.4e2	0.	2.8e3													
a_{lu}	-4.0e2	3.8	0.	-1.1e2	1.2e3	-2.5e2	0.	-1.2e3	7.1e2												
a_{ld}	-6.9e2	-6.9	0.	66.	1.4e3	3.3e2	0.	-1.4e3	5.8e2	7.8e2											
a_{ee}	-59.	-42.	5.3e2	6.1e2	0.	0.	2.6e2	0.	0.	0.	4.8e2										
a_{eu}	7.8e2	1.1e2	0.	-2.1e2	-1.3e3	-9.1e2	0.	1.4e3	-4.8e2	-7.3e2	0.	8.4e2									
a_{ed}	4.2e2	-83.	0.	1.7e2	-1.3e3	5.5e2	0.	1.3e3	-7.3e2	-6.8e2	0.	4.7e2	8.8e2								
a_{hl}^s	-1.7e4	-4.1e3	1.5e2	9.7e3	-5.9e2	8.3e2	17.	3.7e2	-3.9e2	-1.6e2	1.3e2	66.	3.8e2	5.5e4							
a_{hl}^t	5.9e4	1.7e4	-43.	-3.0e4	-7.1e2	-6.6e2	-31.	6.6e2	-82.	-3.4e2	-32.	4.9e2	47.	1.5e4	6.3e4						
a_{hq}^s	-1.9e3	-1.4e3	0.	2.7e3	-2.6e3	-72.	0.	2.6e3	-1.2e3	-1.4e3	0.	1.2e3	1.4e3	-6.6e3	-8.7e3	6.0e3					
a_{hq}^t	-9.3e3	-4.5e3	0.	8.7e3	-49.	3.5e2	0.	56.	-1.4e2	-36.	0.	-64.	1.8e2	-2.4e4	-3.1e4	7.7e3	2.6e4				
a_{hu}	-6.1e2	-6.6e2	0.	1.2e3	-1.2e3	-4.	0.	1.2e3	-5.1e2	-6.9e2	0.	5.7e2	6.7e2	-3.7e3	-4.4e3	2.2e3	4.1e3	1.4e3			
a_{hd}	1.2e3	4.3e2	0.	-8.1e2	-1.4e3	-1.3e2	0.	1.4e3	-6.9e2	-7.2e2	0.	6.7e2	7.3e2	3.3e3	3.6e3	4.2e2	-2.9e3	1.6e2	1.1e3		
a_{he}	-2.8e4	-4.6e3	-1.1e2	9.0e3	4.6e2	-1.6e2	23.	-4.5e2	2.5e2	2.4e2	-96.	-1.7e2	-3.0e2	-2.5e4	-3.2e4	4.5e3	1.7e4	2.3e3	-2.1e3	3.2e4	
a_W	7.7	4.5	0.	-4.2	0.	0.	0.	0.	0.	0.	0.	0.	0.	6.3	-1.7	0.	0.8	0.	0.	1.4	2.6
	a_{WB}	a_h	a_{ll}^s	a_{ll}^t	a_{lq}^s	a_{lq}^t	a_{le}	a_{qe}	a_{lu}	a_{ld}	a_{ee}	a_{eu}	a_{ed}	a_{hl}^s	a_{hl}^t	a_{hq}^s	a_{hq}^t	a_{hu}	a_{hd}	a_{he}	a_W

(Times $10^{12} \, (\text{GeV})^4$

 $\chi^2 = \chi^2_{min} + (a_i - \hat{a}_i)\mathcal{M}_{ij}(a_j - \hat{a}_j)$

 \mathcal{M}_{ij} only depends on the experimental errors, and would change if precision of the data improves

 \hat{a}_i depend on the SM predictions, central values of observables, and experimental errors

Kinetic mixing between hypercharge B and Z'

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{\lambda}{2} B_{\mu\nu} X^{\mu\nu}$$

$$\sum_{B} X X M B$$

$$\mathcal{L}_{eff} = \frac{\lambda^2}{M_X^2} (\partial^{\mu} B_{\mu\nu})^2$$

(Related to the Y parameter introduced by Barbieri, Pomarol, Rattazzi, Strumia)

$$-(\frac{0.7}{1 \text{ TeV}})^2 < \frac{\lambda^2}{M_X^2} < (\frac{0.2}{1 \text{ TeV}})^2$$

Generic Z' boson

Global analysis: $M_{Z'} > 2.2 (2.4)$ TeV

An extra vector-like doublet of quarks

 $\mathcal{L} = -M\overline{Q}Q - \lambda_d\overline{Q}dh - \lambda_u\overline{Q}uh + \text{h.c.}$

(Assuming universal

family couplings)

Littlest Higgs: $(SU(2) \times U(1))^2 \rightarrow SU(2) \times U(1)$ Contributions from scalar triplets: a_h Z' bosons: a_h, a_{hf}^s, a_{ff}^s W' bosons: a_{hf}^t, a_{ff}^t

Simplest Little Higgs: $SU(3) \times U(1) \rightarrow SU(2) \times U(1)$ Contributions from gauge bosons: a_h, a_{hf}^s, a_{ff}^s and fermions: a_{hf}^s, a_{hf}^t

(Two different ways of arranging down quark Yukawa couplings.)

> Z. Han PRD73, 015005

Little Higgs Models with T parity (H.-C. Cheng+I. Low)

Loop contributions to S and T and to 4-fermi operators

$$R = rac{\lambda_1}{\lambda_2}$$

(Ratio of Yukawa couplings)

Hubisz, Meade, Noble, Perelstein; JHEP 0601:135

Summary

- Standard Model works extremely well placing constraints in several TeV range on new states
- No substantial improvement of EW data anytime soon
- Effective Lagrangian approach to "global" analysis is possible, easy, and useful
- Lots of interesting models within the LHC reach

the end \blacksquare