

Jim Rohlf
Boston University

Jet Cross Section

Outline

Tools

Standard Model

Higgs
SUSY

Calorimetry

ATLAS

CMS

Calorimeter Performance Studied Extensively in Test Beams

G. Baiatian et al.

CMS NOTE 139/2006
EPJ in press

Figure 3: Pulse shape for 30 GeV electrons and 300 GeV pions.

K. Anderson, et al., Nucl. Instr. and Meth. A 551 (2005) 469.

Figure 38: Energy distribution in $\mathrm{HCAL}(5 \times 5$ towers) for 100 GeV pions.

$$
\left(\frac{e}{\pi}\right)=\frac{e / h}{1+(e / h-1) \cdot f_{\pi^{0}}}
$$

Jet algorithms

iterative cone:

use seed above some threshold and sum up particles in a cone of specified size, typically $R=\left(\Delta \Phi^{2}+\Delta \eta^{2}\right)^{1 / 2}=0.7$

midpoint cone:

potential jets within some cone size of each other are either split or merged
inclusive k_{T} : now available as "fast k_{T} " $\mathrm{N}^{3} \rightarrow \mathrm{NlnN}$
clustering algorithm, finds hits that have small momentum transverse to the reconstructed jet axis

$$
\begin{aligned}
d_{i} & =\left(E_{\mathrm{T}, i}\right)^{2} R^{2}, \\
d_{i j} & =\min \left\{E_{\mathrm{T}, i}^{2}, E_{\mathrm{T}, j}^{2}\right\} R_{i j}^{2} \quad \text { with } \quad R_{i j}^{2}=\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2},
\end{aligned}
$$

Reconstructing the Jet Energy

MC Jets Cone 0.5
 $\Delta R=0.5$

 E_{T} jet GEN
$2000-4500 \mathrm{GeV}$
$2000-2900 \mathrm{GeV}$ - $1400-2000 \mathrm{GeV}$ F. $750-1000 \mathrm{GeV}$ $550-750 \mathrm{Ge}$ V $300-400 \mathrm{GeV}$ A $200-300 \mathrm{GeV}$ - $150-200 \mathrm{GeV}$ $\triangle 90-120 \mathrm{GeV}$ 4

Jet Energy (GeV)

Jet Energy Resolution

Can be improved with e/m response calibration.

Phi and Eta Resolution

Use of Tracks to Improve Resolution

$E_{T}{ }^{\text {miss }}$ Performance

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS

 WITH ASSOCIATED MISSING ENERGY AT $\sqrt{s}=540 \mathrm{GeV}$UA1 Collaboration, CERN, Geneva, Switzerland

Volume 122B, number 1

PHYSICS LETTERS
24 February 1983

 direction $\left[\Delta E_{y}(\mathrm{GeV})\right]$ plotted versus the scalar sum of missing transverse energy $\left[E_{\mathrm{T}}(\mathrm{GeV})\right]$ for minimum bias triggers. The y-axis is pointing up vertically.

$\mathbf{E}_{\mathbf{T}}{ }^{\text {miss }}$ resolution with pileup

$$
\mathcal{L}=2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

We fit same stochastic as MB no pileup (pileup just adds activity)

Soft QCD agrees with MB

CMS Fit:

$$
\sigma=\left[(4.0 \mathrm{GeV})^{2}+\left(0.63 \mathrm{GeV}^{1 / 2} \sqrt{\left.\Sigma E_{\mathrm{T}}-142 \mathrm{GeV}\right)^{2}}\right]^{1 / 2}\right.
$$

$E_{\mathbf{T}}{ }^{\text {miss }}$ resolution with pileup: hard collisions
 QCD, with pileup $\mathcal{L}=2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$\boldsymbol{E}_{\mathbf{T}}{ }^{\text {miss }}$ Angular Resolution

With pileup $\mathcal{L}=2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Data Driven Calibration Strategy

Calorimeter tower calibration:

- Measure noise with beam-crossing triggers to check and adjust thresholds.
-Take data without zero-suppression to study the electronic noise offset.
- Check and adjust phi symmetry with minimum bias triggers.
- Use isolated muons from W decays to compare the tower-to-tower response to radioactive source source measurements and test beam muons.
- Compare isolated high $\mathbf{p}_{\mathbf{t}}$ charged tracks with test beam data.

Jet calibration:

- Measure the effect of pile-up on clustering algorithms and thresholds.
- Use $p_{\text {t }}$ balance in QCD dijet events to calibrate the jet energy scale vs. eta and verify the resolution.
- Use $p_{\text {t }}$ balance in photon+jet events to calibrate the absolute energy scale.
- Use W mass fitting in tagged top events as to check and fine tune the jet energy scale.

Calibration with Photon + Jet

pT balance =
(pT jet - pT photon)/ pT photon
Fit peak region iterating a gaussian fit

Expected error on dijet cross section*

*Does not include luminosity error.

History of compositeness

J. Rohlf: Modern Physics from $\boldsymbol{\alpha}$ to $\mathbf{Z n}^{\mathbf{0}}$

High mass di-jet final states

Calibration with Top

Hunting the Higgs

q9-	Rates and Backgrounds					
	m_{H}	BR ($\mathrm{H} \rightarrow \mathrm{W}$	$\mathrm{W}^{(*)}$)	$\sigma(\ell \nu \mathrm{jj})(\mathrm{pb})$	Events in $60 \mathrm{fb}^{-1}$	Generated
asignal$120<\mathrm{m}_{\mathrm{H}}<250 \mathrm{GeV} / \mathrm{c}^{2}$	120	0.122		0.1789	10734	465.8 \%
	130	0.279		0.3623	21738	230.0\%
	140	0.480		0.5520	33120	150.9 \%
	150	0.685		0.7037	42222	118.4 \%
	160	0.918		0.8530	51180	97.70 \%
	170	0.967		0.8489	50934	98.17 \%
	180	0.929		0.7639	45834	109.1 \%
	190	0.778		0.5995	35970	139.0 \%
	200	0.735		0.5287	31704	157.7 \%
	210	0.727		0.4895	29370	170.2 \%
	220	0.719		0.4539	27234	183.6\%
	250	0.700		0.3701	22206	225.2 \%
	Channels		$\sigma(\mathrm{pb})$		Events in $60 \mathrm{fb}^{-1}$	Generated
	$\mathrm{t} \overline{\mathrm{t}}+\mathrm{jets}$		840		50.4 million	6.9 \%
	$\mathrm{W}+\mathrm{t} \overline{\mathrm{b}}$ ($\overline{\mathrm{t}} \mathrm{b}$)		100		6.0 million	57.6\%
	WW + jets (QCD)		73.1		4.39 million	3.95 \%
	WW + 2 jets (EW)		1.26		75600	113.0 \%
backgrounds	WZ + jets		27.2		1.63 million	15\%
	ZZ + jets		10.7		0.642 million	68.1\%
	W +4 jets		677.	(e/ $\mu / \tau+\nu)$	40.7 million	1.95 \%
	W +3 jets		1689	$(e / \mu / \tau+\nu)$	101.3 million	1.04 \%
	$\mathrm{Z}+4$ jets		44.6	e/ $/ \mu \mu)$	2.68 million	11.2 \%
	$\mathrm{Z}+3$ jets		112.	$(e e / \mu \mu)$	6.73 million	8.91 \%

Selection Cuts (I)

MET and Jet Distributions

(a)

(b)

Additional Cuts

 extra jetsqqH $\mathrm{E}_{\mathbf{T}}$ Balance

Number of Extra Jet

Lepton-W ΔR

qqH, $\quad \mathbf{H} \rightarrow \mathbf{W W *} \rightarrow$ evpv

Summary of Higgs signals

jets	Production	Decay	Mass region a	nd purpose
	Gluon Fusion	H -> $\gamma \gamma$	$110-140 \mathrm{GeV}$	Mass
		H -> ZZ-> 4 I	140-1000GeV	Discovery, Mass, Spin, Coupling
		H -> WW	$130-170 \mathrm{GeV}$	Discovery $E T^{\text {miss }}$
	Vector Boson Fusion	H -> $\tau \tau$	$110-140 \mathrm{GeV}$	Discovery, Mass, Coupling
		H -> WW	$130-200 \mathrm{GeV}$	Discovery, W coupling
		H -> $\gamma \gamma$	$110-140 \mathrm{GeV}$	Discovery, Mass
		H $->\mathrm{bb}$	$110-140 \mathrm{GeV}$	Γ_{b} coupling
	ttH	H -> bb	$110-130 \mathrm{GeV}$	Γ_{τ} coupling
		H -> $\tau \tau$	$110-130 \mathrm{GeV}$	
		H -> WW	$130-180 \mathrm{GeV}$	
	WH	H -> WW	$140-170 \mathrm{GeV}$	Discovery, W coupling

R. Mazini , Puerto Rico (2006)

SUSY Spectroscopy

Possible decays of light sparticles

\[

\]

\Rightarrow produces $\mathbf{E T}^{\text {miss }}$ (and jets)

Sparticles are pair-produced with (possibly) large cross sections

Table 13.2: Cross sections for the test points in pb at NLO (LO) from PROSPINO1.

Point	$M(\tilde{q})$	$M(\tilde{g})$	$\tilde{g} \tilde{g}$	$\tilde{g} \tilde{q}$	$\tilde{q} \tilde{q}$	$\tilde{q} \tilde{q}$	Total
LM1	558.61	611.32	10.55	28.56	8.851	6.901	54.86
			(6.489)	(24.18)	(6.369)	(6.238)	(43.28)
LM2	778.86	833.87	1.443	4.950	1.405	1.608	9.41
			(0.829)	(3.980)	(1.013)	(1.447)	(7.27)
LM3	625.65	602.15	12.12	23.99	4.811	4.554	45.47
			(7.098)	(19.42)	(3.583)	(4.098)	(34.20)
LM4	660.54	695.05	4.756	13.26	3.631	3.459	25.11
			(2.839)	(10.91)	(2.598)	(3.082)	(19.43)
LM5	809.66	858.37	1.185	4.089	1.123	1.352	7.75
			(0.675)	(3.264)	(0.809)	(1.213)	(5.96)
LM6	859.93	939.79	0.629	2.560	0.768	0.986	4.94
			(0.352)	(2.031)	(0.559)	(0.896)	(3.84)
LM7	3004.3	677.65	6.749	0.042	0.000	0.000	6.79
			(3.796)	(0.028)	(0.000)	(0.000)	(3.82)
LM8	820.46	745.14	3.241	6.530	1.030	1.385	12.19
			(1.780)	(5.021)	(0.778)	(1.230)	(8.81)
LM9	1480.6	506.92	36.97	2.729	0.018	0.074	39.79
			(21.44)	(1.762)	(0.015)	(0.063)	(23.28)
LM10	3132.8	1294.8	0.071	0.005	0.000	0.000	0.076
			(0.037)	(0.004)	(0.000)	(0.000)	(0.041)
HM1	1721.4	1885.9	0.002	0.018	0.005	0.020	0.045
			(0.001)	(0.016)	(0.005)	(0.021)	(0.043)
HM2	1655.8	1785.4	0.003	0.027	0.008	0.027	0.065
			(0.002)	(0.024)	(0.007)	(0.028)	(0.061)
HM3	1762.1	1804.4	0.003	0.021	0.005	0.018	0.047
			(0.002)	(0.018)	(0.004)	(0.019)	(0.043)
HM4	1815.8	1433.9	0.026	0.056	0.003	0.017	0.102
			(0.014)	(0.043)	(0.003)	(0.017)	(0.077)

```
heavy gluino
g}->\tilde{q}\tilde{q},\tilde{q}->q
                            MSUGRA, tan}\beta=10,\mp@subsup{A}{0}{}=0,\mu>
```



```
heavy squark
\[
\tilde{q} \rightarrow \tilde{g} q, \tilde{g} \rightarrow q \bar{q} \chi
\]
```


Inclusive analysis with missing transverse energy and jets

Table 13.5: The $E_{\mathrm{T}}^{\text {miss }}+$ multi-jet SUSY search analysis path

Table 13.6: Selected SUSY and Standard Model background events for $1 \mathrm{fb}^{-1}$

Signal	$t \bar{t}$	single t	$Z(\rightarrow \nu \bar{\nu})+$ jets	$(W / Z, W W / Z Z / Z W)+$ jets	QCD
6319	53.9	2.6	48	33	107

Inclusive analysis with missing transverse energy and jets

Not easy!

Lepton + jets + ETmiss

$$
M_{3} \equiv M_{\tilde{g}} \simeq 2.7 m_{1 / 2}
$$

S. Padhi, PASCOS 2006

Also not easy!

Inclusive analyses with Higgs

events can be efficiently triggered using inclusive SUSY triggers such as jet $+E_{T}^{m i s s}$, and the dominant $h^{0} \rightarrow b \bar{b}$ decay mode of the Higgs boson can be exploited

Figure 13.17: Higgs discovery reach in SUSY cascades for 2,10 and $30 \mathrm{fb}^{-1}$.

Figure 13.16: Invariant mass distribution of $b \bar{b}$ jets for the search of Higgs final states with $1 \mathrm{fb}^{-1}$.

Inclusive analyses with top

$$
\tilde{t}_{1} \rightarrow t \tilde{\chi}_{2}^{0} \rightarrow t l \tilde{l}_{R} \rightarrow t l l \tilde{\chi}_{1}^{0}
$$

cut	SUSY	SUSY	ttInc	WW	ZW	Single t	$\mathrm{wT} / \mathrm{noT}$
	(withTop)	(noTop)					
x-sec(pb) NLO	52		830	269.91	51.5	250	-
No.of.used.events	494261		1674500	305000	70000	100000	-
NEve(Nor.xsec) $1 \mathrm{fb}^{-1}$	8375	43625	830000	269910	51500	250000	0.19
L1T (Jet/Met)	6269	33582	75806	18498	598	10875	0.19
HLT (Jet/Met)	5070	29427	14430	4733	142	1750	0.17
MET $\geq 150 \mathrm{GeV}$	4183	25677	4930	2312	99	653	0.16
$n_{\text {bj }} \geq 1$	3457	14388	3718	792	32	355	0.24
$n_{j}^{\text {bor light }} \geq 4$	1789	4576	769	25	0	33	0.39
A convergent Fit	1335	3062	557	12	0	28	0.44
χ^{2} probability >0.1	105	69	56	0	0	5	1.52
$\Delta \phi<2.6$	79	52	12	0	0	5	1.51
$n_{l}>0$	38	17	5	0	0	0	2.19

Figure 13.22: (left) Distributions of $E_{\mathrm{T}}^{\text {miss }}$ and (right) fitted top mass after all selection criteria

Inclusive analyses with top

Figure 13.23: The 5σ reach in $m_{0}, m_{1 / 2}$ plane with 1,10 and $30 \mathrm{fb}^{-1}$ obtained for final states with a top quark.

SUSY Reach: Summary

Little Higgs ATLAS

Heavy Top Searches (II)

$300 \mathrm{fb}^{-1}$

$\mathrm{T}->\mathrm{Wb}$

Eur. Physics Journal C 39 S2 (2005) s13-s24

- Similar cuts for the tZ channel as CMS
- Wb
- Charged lepton $P_{T}>100 \mathrm{GeV}$
- 1 bjet with $P_{T}>200 \mathrm{GeV}$

- No more than 2 jets with $\mathrm{P}_{\mathrm{T}}>50 \mathrm{GeV}$
- Dijet mass > 100 GeV
- Missing $P_{T}>100 \mathrm{GeV}$
K. Black, PASCOS 2006

Resonant Vector Boson Scattering

- Selection: 2 forward jets + central jets and/or leptons + missing E_{T} (for $\mathrm{W} \rightarrow \ell v$)
Require no additional central jet \& b-jet veto (for jet modes)
- Bkg: gluon and γ / Z exchange with W and Z radiation also $\mathrm{t} \overline{\mathrm{t}} \& \mathrm{~W}+4$ jets (need more stats)

- Exp ${ }^{t}$ issues:
- Merging of jets from high-pT W or Z decay (need cone $\Delta R=0.2$)
- Impact of pileup on forward jet tagging?
- Promising sensitivity for jet modes at $100 \mathrm{fb}^{-1}$ (need $300 \mathrm{fb}^{-1}$ for $\mathrm{WZ} \rightarrow \ell v \mathrm{ll}$) \rightarrow study is ongoing

Doubly-Charged Higgs in LR Symmetric Model

- Left-Right Symmetric Model based on $\operatorname{SU}(2)_{\mathrm{L}} \otimes \mathrm{SU}(2)_{\mathrm{R}} \otimes \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$
- Features triplet of Higgs fields $\left(\Delta_{R}{ }^{0}, \Delta_{R}{ }^{+}, \Delta_{R}{ }^{++}\right)+$two doublets ϕ
- Predicts new gauge bosons (W_{R} and Z_{R}) \& new fermions (v_{R})
- Addresses origin of pure left-handed charged weak interaction + origin of light neutrino masses (via see-saw mech. \& heavy v_{R})
- Production: $\mathrm{qq} \rightarrow \mathrm{q}^{\prime} \mathrm{q}^{\prime} \mathrm{W}_{\mathrm{R}, \mathrm{L}^{+}} \mathrm{W}_{\mathrm{R}, \mathrm{L}^{+}} \rightarrow \mathrm{q}^{\prime} \mathrm{q}^{\prime} \Delta_{\mathrm{R}, \mathrm{L}^{++}}$

$$
\mathrm{q} \overline{\mathrm{q}} \rightarrow \gamma^{*} / \mathrm{Z} / \mathrm{Z}_{\mathrm{R}, \mathrm{~L}} \rightarrow \Delta_{\mathrm{R}, \mathrm{~L}}{ }^{++} \Delta_{\mathrm{R}, \mathrm{~L}}{ }^{--}
$$

- Decay: $\Delta_{\mathrm{R}, \mathrm{L}^{++}} \rightarrow \mathrm{I}^{+} \mathrm{I}^{+}$
- Selection (WW fusion): 2 like-sign leptons (e, μ, τ) + "forward" jets
- Bkg: W+ ${ }^{+}{ }^{+}$q q, W t $\overline{\mathrm{t}}$

Summary

Response of ATLAS and CMS calorimeters to single particles is well understood from years of test beam work

Expected Jet and E_{T} miss performance is well studied by MC (and tied to TB work) E_{T} miss will be a tremendous challenge at startup

Measurement QCD jet rates will be a prerequiste for verifying detector functionality and will provide the first glimpse of the new energy frontier

Jets and $E_{T}{ }^{\text {miss }}$ will play a major role, especially in combination with a lepton trigger, in the search for Higgs and Supersymmetry

