

2007 Aspen Winter Conference "New Physics at the Electroweak Scale and New Signals at Hadron Colliders" Jan. 11, 2007

Missing E_T + Jets Signatures at the LHC

Jim Rohlf Boston University

			Ca	lor	'ir	ne	t	:ry	7	
		res.	@ 50 GeV	material in	front	thickness		$\Delta \eta \times$	$\Delta \phi$	
	ATLAS 1.3%		%	2-4 χ_0		21-36 χ_0 front 0.0		front 0	003×0.1	
ECAL						middle		middle (0.025 × 0.025	
								back O .	05×0.025	
	CMS	0.8%		0.4-1.3 χ ₀		25-27 χ_0 0.017		0.017	4×0.0174	
			coverage		res. @	2 100 GeV	thi	ckness	$\Delta\eta imes\Delta\phi$	
	ATLAS	barrel	$ \eta < 1$.0	8%		8-	10λ	front 0.1 $ imes$ 0.1	
	extended bar	tended barrel 0.8		$.8 < \eta < 1.7$					back $0.2 imes0.1$	
HCAL	endcap 1.		$1.5 < \eta < 3.2$						$0.1-0.2 \times 0.1$	
	forward		$ 3.1 < \eta < 4.9$						0.2×0.2	
	CMS barr	el	$ \eta < 1$.4	10%)	11	L-15 λ	0.087 × 0.087	
	endcap		1.4 <	$\eta < 3.0$					$0.087 \times 0.087 - 0.17$	
	forward		3.0 <	$\eta < 5.0$	20%)			0.17×0.17	

ATLAS

CMS

Calorimeter Performance Studied Extensively in Test Beams

Jet algorithms

iterative cone:

use seed above some threshold and sum up particles in a cone of specified size, typically R = $(\Delta \Phi^2 + \Delta \eta^2)^{1/2} = 0.7$

midpoint cone:

potential jets within some cone size of each other are either split or merged

inclusive k_T : now available as "fast k_T " $N^3 \rightarrow NlnN$

clustering algorithm, finds hits that have small momentum transverse to the reconstructed jet axis

$$d_{i} = (E_{\mathrm{T},i})^{2} R^{2},$$

$$d_{ij} = \min\{E_{\mathrm{T},i}^{2}, E_{\mathrm{T},j}^{2}\} R_{ij}^{2} \text{ with } R_{ij}^{2} = (\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2},$$

Can be improved with e/π response calibration.

Phi and Eta Resolution

Use of Tracks to Improve Resolution

E_T^{miss} **Performance**

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS WITH ASSOCIATED MISSING ENERGY AT \sqrt{s} = 540 GeV

UA1 Collaboration, CERN, Geneva, Switzerland

 $\sigma = [(4.0 \text{ GeV})^2 + (0.63 \text{ GeV}^{1/2} \sqrt{\Sigma E_{T} - 142 \text{ GeV}})^2]^{1/2}$

E_T^{miss} resolution with pileup: hard collisions

QCD, with pileup $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

Data Driven Calibration Strategy

Calorimeter tower calibration:

- Measure noise with beam-crossing triggers to check and adjust thresholds.
- •Take data without zero-suppression to study the electronic noise offset.
- Check and adjust phi symmetry with minimum bias triggers.
- Use isolated muons from W decays to compare the towerto-tower response to radioactive source source measurements and test beam muons.
- Compare isolated high p_T charged tracks with test beam data.

Jet calibration:

- Measure the effect of pile-up on clustering algorithms and thresholds.
- Use p_T balance in QCD dijet events to calibrate the jet energy scale vs. eta and verify the resolution.
- Use p_T balance in photon+jet events to calibrate the absolute energy scale.
- Use W mass fitting in tagged top events as to check and fine tune the jet energy scale.

Expected error on dijet cross section*

$$\frac{d\hat{\sigma}(q_{i}q_{i} \rightarrow q_{i}q_{i})}{d\cos\theta^{*}} = \frac{\pi}{2\hat{s}} \left\{ \frac{4}{9} \alpha_{S}^{2} \left[\frac{\hat{u}^{2} + \hat{s}^{2}}{\hat{t}^{2}} + \frac{\hat{t}^{2} + \hat{s}^{2}}{\hat{u}^{2}} - \frac{2}{3} \frac{\hat{s}^{2}}{\hat{t}\hat{u}} \right] + \frac{8}{9} \alpha_{S} \frac{A}{\Lambda^{2}} \left[\frac{\hat{s}^{2}}{\hat{t}} + \frac{\hat{s}^{2}}{\hat{u}} \right] + \frac{8}{3} \frac{\hat{s}^{2}}{\Lambda^{4}} \right\}$$

$$\begin{pmatrix} \mathsf{q} & \mathsf{QCD} & \mathsf{New Physics} \\ \hat{t} = \hat{s}(1 - \cos\theta^{*})/2 & \hat{u} = \hat{s}(1 + \cos\theta^{*})/2 \\ \mathsf{Easy way: look at ratio of dijet rate in two \eta regions} \\ \end{pmatrix}$$

aaЦ	Rates and Backgrounds							
		$BR (H \to W)$	$W^{(*)}) = \sigma(\ell\nu jj) \text{ (pb)}$	Events in 60 fb^{-1}	Generated			
$l\pm 1$	120	0.122	0.1789	10734	465.8 %			
$\iota \nu J J$	130	0.279	0.3623	21738	230.0 %			
	140	0.480	0.5520	33120	150.9 %			
	150	0.685	0.7037	42222	118.4 %			
signal	160	0.918	0.8530	51180	97.70 %			
	170	0.967	0.8489	50934	98.17 %			
$120 < m_{\rm H} < 250 {\rm GeV/c^2}$	180	0.929	0.7639	45834	109.1 %			
	190	0.778	0.5995	35970	139.0 %			
	200	0.735	0.5287	31704	157.7 %			
	210	0.727	0.4895	29370	170.2 %			
	220	0.719	0.4539	27234	183.6 %			
	250	0.700	0.3701	22206	225.2 %			
	Channels		σ (pb)	Events in 60 fb^{-1}	Generated			
	t t + j	ets	840	50.4 million	6.9 %			
	W + 1	$t \overline{b} (\overline{t} b)$	100	6.0 million	57.6 %			
	WW + jets (QCD)		73.1	4.39 million	3.95 %			
	WW + 2 jets (EW)		1.26	75600	113.0 %			
backgrounds	WZ + jets		27.2	1.63 million	15%			
backgrounds	ZZ + jets		10.7	0.642 million	68.1 %			
	W + 4	4 jets	677.4 ($e/\mu/\tau + \nu$)	40.7 million	1.95 %			
	W + .	3 jets	1689.7 $(e/\mu/\tau + \nu)$	101.3 million	1.04 %			
	Z+4	jets	44.6 ($ee/\mu\mu$)	2.68 million	11.2 %			
	Z + 3 jets		112.1 ($ee/\mu\mu$)	6.73 million	8.91 %			

Selection Cuts (I) Configuration Selection Electron: $E_{T}^{Hcal}/E_{T}^{Ecal} < 0.05$ 0.9 < E/p < 1.8 $|{\rm E}_{\rm T}^{0.2} - {\rm E}_{\rm T}^{\rm e}| < 5.0~GeV$ $|(\bar{E}_{T}^{0.2} - \bar{E}_{T}^{e})/E_{T}^{e}| < 0.3$ $|E_{T}^{0.2-0.4}/E_{T}^{e}| < 0.3$ Muon : $|E_T^{0.2} - p_T^{\mu}| < 9.0 \text{ GeV}$ $|(E_T^{0.2} - p_T^{e})/p_T^{\mu}| < 0.3$ Lepton selection (L-S) $|E_{T}^{0.4}/E_{T}^{\mu}| < 0.3$ $\sigma = 15 \text{ GeV}$ $30 < p_T < 120 \text{ GeV/c}$ $\Delta R_{\ell-i} > 0.5$ $\rm N_{jet} > 4$ jets with $\rm E_{T} > 25~GeV$ Event selection $E_{T}^{miss} > 30 \text{ GeV}$ (E-S) $E_T > 30 \text{ GeV}$ $\eta_1 \cdot \eta_2 < 0$ Forward jet tagging (FJT) $|\eta_1 - \eta_2| > 3.8$ $m_{qq} > 800 \, GeV/c^2$ $\Delta w_{\rm M} < 25 \; {\rm GeV/c^2} \; (m_{\rm H} \ge 160 \; {\rm GeV/c^2})$ Hadronic W reco $30 < m_{ii} < 90 \ GeV/c^2 \ (m_H < 160 \ GeV/c^2)$ (H-W) Hadronic W Mass select di-jet with least Δw_M for multiple ones select leptonic W candidates of smaller ΔR with hadronic W Leptonic W reco (L-W)

Summary of Higgs signals

	Production	Decay	Mass region a	nd purpose
		Η -> γγ	110-140GeV	Mass
	Gluon Fusion	H -> ZZ-> 4 I	140-1000GeV	Discovery , Mass, Spin, Coupling
		H -> WW	130-170GeV	Discovery ET ^{miss}
		Η -> ττ	110-140GeV	Discovery, Mass, Coupling
oto	Vector Boson Fusion	H -> WW	130-200GeV	Discovery, W coupling
ets		Η -> γγ	110-140GeV	Discovery, Mass
		H -> bb	110-140GeV	$\Gamma_{\rm b}$ coupling
		H -> bb	110-130GeV	
	ttH	Η -> ττ	110-130GeV	Γ_{τ} coupling
		H -> WW	130-180GeV	
	WH	H -> WW	140-170GeV	Discovery, W coupling

R. Mazini, Puerto Rico (2006)

Possible decays of light sparticles

Sparticles are pair-produced with (possibly) large cross sections

Table 13.2: Cross sections for the test points in pb at NLO (LO) from PROSPINO1.

Point	$M(\tilde{q})$	$M(\tilde{g})$	$ ilde{g} ilde{g}$	$ ilde{g} ilde{q}$	$ ilde{q}\overline{ ilde{q}}$	ilde q ilde q	Total
LM1	558.61	611.32	10.55	28.56	8.851	6.901	54.86
			(6.489)	(24.18)	(6.369)	(6.238)	(43.28)
LM2	778.86	833.87	1.443	4.950	1.405	1.608	9.41
			(0.829)	(3.980)	(1.013)	(1.447)	(7.27)
LM3	625.65	602.15	12.12	23.99	4.811	4.554	45.47
			(7.098)	(19.42)	(3.583)	(4.098)	(34.20)
LM4	660.54	695.05	4.756	13.26	3.631	3.459	25.11
			(2.839)	(10.91)	(2.598)	(3.082)	(19.43)
LM5	809.66	858.37	1.185	4.089	1.123	1.352	7.75
			(0.675)	(3.264)	(0.809)	(1.213)	(5.96)
LM6	859.93	939.79	0.629	2.560	0.768	0.986	4.94
			(0.352)	(2.031)	(0.559)	(0.896)	(3.84)
LM7	3004.3	677.65	6.749	0.042	0.000	0.000	6.79
			(3.796)	(0.028)	(0.000)	(0.000)	(3.82)
LM8	820.46	745.14	3.241	6.530	1.030	1.385	12.19
			(1.780)	(5.021)	(0.778)	(1.230)	(8.81)
LM9	1480.6	506.92	36.97	2.729	0.018	0.074	39.79
			(21.44)	(1.762)	(0.015)	(0.063)	(23.28)
LM10	3132.8	1294.8	0.071	0.005	0.000	0.000	0.076
			(0.037)	(0.004)	(0.000)	(0.000)	(0.041)
HM1	1721.4	1885.9	0.002	0.018	0.005	0.020	0.045
			(0.001)	(0.016)	(0.005)	(0.021)	(0.043)
HM2	1655.8	1785.4	0.003	0.027	0.008	0.027	0.065
			(0.002)	(0.024)	(0.007)	(0.028)	(0.061)
HM3	1762.1	1804.4	0.003	0.021	0.005	0.018	0.047
			(0.002)	(0.018)	(0.004)	(0.019)	(0.043)
HM4	1815.8	1433.9	0.026	0.056	0.003	0.017	0.102
			(0.014)	(0.043)	(0.003)	(0.017)	(0.077)

Inclusive analysis with missing transverse energy and jets

Table 13.5: The E_{T}^{miss} + multi-jet SUSY search analysis path

Table 13.6: Selected SUSY and Standard Model background events for 1 fb^{-1}

Signal	$t\bar{t}$	single t	$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	(W/Z,WW/ZZ/ZW) + jets	QCD
6319	53.9	2.6	48	33	107

Inclusive analyses with Higgs

events can be efficiently triggered using inclusive SUSY triggers such as $jet+E_T^{miss}$, and the dominant $h^0 \rightarrow b\overline{b}$ decay mode of the Higgs boson can be exploited

Figure 13.17: Higgs discovery reach in SUSY cascades for 2, 10 and 30 fb^{-1} .

Inclusive analyses with top $\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0 \rightarrow t l \tilde{l}_R \rightarrow t l l \tilde{\chi}_1^0$

cut	SUSY	SUSY	ttInc	WW	ZW	Single t	wT/noT
	(withTop)	(noTop)					
x-sec(pb) NLO	52		830	269.91	51.5	250	-
No.of.used.events	494261		1674500	305000	70000	100000	-
NEve(Nor.xsec)1 fb $^{-1}$	8375	43625	830000	269910	51500	250000	0.19
L1T (Jet/Met)	6269	33582	75806	18498	598	10875	0.19
HLT (Jet/Met)	5070	29427	14430	4733	142	1750	0.17
$MET \ge 150 GeV$	4183	25677	4930	2312	99	653	0.16
$n_{bj} \ge 1$	3457	14388	3718	792	32	355	0.24
$n_j^{b \text{ or light}} \ge 4$	1789	4576	769	25	0	33	0.39
A convergent Fit	1335	3062	557	12	0	28	0.44
χ^2 probability >0.1	105	69	56	0	0	5	1.52
$\Delta \phi < 2.6$	79	52	12	0	0	5	1.51
$n_l > 0$	38	17	5	0	0	0	2.19

Figure 13.22: (left) Distributions of $E_{\rm T}^{\rm miss}$ and (right) fitted top mass after all selection criteria

Inclusive analyses with top

Figure 13.23: The 5σ reach in m_0 , $m_{1/2}$ plane with 1, 10 and 30 fb⁻¹ obtained for final states with a top quark.

K. Black, PASCOS 2006

Resonant Vector Boson Scattering

• Selection: 2 forward jets + central jets and/or leptons + missing E_T (for $W \rightarrow \ell v$)

Require no additional central jet & b-jet veto (for jet modes)

• Bkg: gluon and γ/Z exchange with W and Z radiation also t t & W+4 jets (need more stats)

• Exp^t issues:

- Merging of jets from high-pT
 W or Z decay (need cone △R = 0.2)
- Impact of pileup on forward jet tagging?
- Promising sensitivity for jet modes at 100 fb⁻¹ (need 300 fb⁻¹ for WZ → ℓv ℓℓ)
 → study is ongoing

S.Willocq (UMass)

Doubly-Charged Higgs in LR Symmetric Model

- Left-Right Symmetric Model based on $SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{B-L}$
 - Features triplet of Higgs fields (Δ_R^0 , Δ_R^+ , Δ_R^{++}) + two doublets ϕ
 - Predicts new gauge bosons (W_R and Z_R) & new fermions (v_R)
 - Addresses origin of pure left-handed charged weak interaction
 + origin of light neutrino masses (via see-saw mech. & heavy v_R)

Summary

Response of ATLAS and CMS calorimeters to single particles is well understood from years of test beam work

Expected Jet and E_T^{miss} performance is well studied by MC (and tied to TB work) E_T^{miss} will be a tremendous challenge at startup

Measurement QCD jet rates will be a prerequiste for verifying detector functionality and will provide the first glimpse of the new energy frontier

Jets and E_T^{miss} will play a major role, especially in combination with a lepton trigger, in the search for Higgs and Supersymmetry

