Recent progress in QCD theory

Frank Petriello

2007 Aspen Winter Conference January 2007

Outline

- Focus: perturbative QCD for LHC physics
- Motivation
 - Limitations of parton shower Monte Carlos
 - Importance of perturbative QCD to verify and improve Monte Carlo tools
 - Testing tools with HERA, Tevatron data
- Merging LO with parton showers
- Status of NLO calculations
 - Automating NLO calculations: $pp \rightarrow Hjj$ at the LHC
 - $gg \rightarrow H \rightarrow WW$ at the LHC: NLO for discovery
 - Resummation, fragmentation, and di-photons at the Tevatron
 - Merging NLO with parton showers
- Status of NNLO calculations
 - NNLO W, Z cross sections with spin correlations and Tevatron data
 - Higgs couplings at NNLO

Physics at the LHC

- LHC turns on in < 1 year!</p>
- Excellent discovery reach at $\sqrt{s} = 14$ TeV:
 - SUSY: squark/gluino reach of 2.5-3 TeV
 - Z', graviton reach of 5-6 TeV
- Enormous event rates at $10 \, \text{fb}^{-1}$ /year:
 - $W \to e\nu$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $t\bar{t}$: 10⁷ events
 - Higgs ($m_H = 700 \text{ GeV}$): 10⁴ events
- ⇒ Both an opportunity (precision, low systematics) and a challenge (backgrounds)

Signal excavation

proton - (anti)proton cross sections

- Not all discovery channels produce dramatic signatures!
- Need theoretical control of distribution shapes, backgrounds, uncertainties, ...
- Measurements of new physics parameters needs theory
- Incorrect theory leads to:
 - Tevatron high E_T jets
 - Tevatron *B*-meson production
 - NuTeV $\sin^2 \theta_W$
 - Brookhaven g-2 of the muon

QCD tools for hadron colliders

- Develop, test QCD tools at HERA, Tevatron
- What are the possible approaches?
 - Fixed-order pQCD: systematic expansion in α_s (LO, NLO, NⁿLO)
 - Quantify, reduce error by studying $\mu_{R,F}$ variation at each order
 - Analytic resummation: treat large logarithms to all orders in α_s
 - ${}_{m{s}}$ Typical cases: $\ln(m_H^2/p_T^2),\,\ln(1-m_H^2/\hat{s})$
 - Parton shower Monte Carlos (HERWIG, PYTHIA)
 - Generate many partons in collinear (leading log) approximation
 - Shower is probablistic and universal; codes contain many processes
 - Combinations of the above (CKKW, MC@NLO)
- HERWIG, PYTHIA: many partons allows hadronization, detector simulation; can access most physics processes; leading log resummation of dangerous kinematic regions
 ⇒ default for many studies

Important to cross-check and understand their limitations!

SUSY searches and PYTHIA

Mangano et al. hep-ph/0504221

- $M_{eff} = \sum_{j} p_{\perp}^{j} + E_{\perp}^{miss}$: standard SUSY discriminator
- ALPGEN: exact LO matrix elements, correct hard emissions
- PYTHIA: extra jets generated via parton shower
- ⇒ Without tuning, PYTHIA does not describe multiple hard emissions well

Isolated photons at HERA

• Production of isolated photons in $e^{\pm}p$ studies by H1, ZEUS

Data/Pythia = 2.3; Data/Herwig = 7.9; both get kinematics incorrect

- PYTHIA γ only from lepton
- HERWIG γ from quark
- Simple LO QCD gets both effects
 - (Gehrmann et al. hep-ph/0601073)

Moral

Moral: need systematic, controlled QCD expansion

- pQCD expansion in α_s augmented with necessary resummation
- Verify and improve Monte Carlo tools

Issues to consider:

- Is the kinematics described correctly? Hard jets, azimuthal correlations require matrix elements; multiple soft/collinear emissions better described by parton showers
 ⇒ full phase-space coverage requires merging parton-shower with multi-parton tree-level (CKKW)
- What is the correct normalization, and what is its uncertainty?
 ⇒ requires NⁿLO fixed-order calculations
- Do new qualitative effects like the gluon pdf (large at the LHC) appear at higher orders?
- Have kinematic boundaries where resummation may be required been considered?

Merging LO with parton showers

- An N jet event: N m jets from parton shower, m from MEs, $m = 0, \ldots, N$
- MEs describe hard/large angle emissions, PS desribe soft/collinear
- **CKKW** (Catani, Krauss, Kuhn, Webber): prescription to cover entire phase-space correctly

• Generate m < N hard jets; probability is

$$P_m = \frac{\sigma_m}{\sigma_0 + \sigma_1 + \dots \sigma_N}$$

- Parton shower from this configuration; veto hard emissions
- Depends on parameter defining "hard" jet
- SHERPA: includes ME generator
- HERWIG, PYTHIA: use external tree-level generator, e.g. MADGRAPH and apply CKKW (Mrenna, Richardson)

⇒ Describes Run II data well

The need for NLO

Predictions at LO suffer from debilitating theory errors

• Example: $pp \rightarrow \nu \bar{\nu} + N$ jets, $p_T^j > 80$ GeV, $|\eta^j| < 2.5, \mu = \sqrt{m_Z^2 + \sum p_T^{j,2}}$

Ν	$\sigma(2\mu)$	$\sigma(\mu/2)$
3	6.47 pb	13.52 pb
4	0.90 pb	2.48 pb

- Uncertainty from μ variation must vanish at higher orders \Rightarrow large NLO corrections
- Typical NLO size: 10-30% for quark-initiated, 50-100% for gluon-initiated
 - New channels open up at higher orders \leftrightarrow gluon pdf large at small x
 - Large coefficients in perturbative corrections (π^2 for *s*-channel processes)
 - Proportional to high power of α_s

Status of NLO calculations

- Parton-level results available for all $2 \rightarrow 2$ and some $2 \rightarrow 3$ processes:
 - AYLEN/EMILIA (de Florian et al.): $pp \rightarrow (W, Z) + (W, Z, \gamma)$
 - DIPHOX (Aurenche et al.): $pp \rightarrow \gamma j, \gamma \gamma, \gamma^* p \rightarrow \gamma j$
 - HQQB (Dawson et al.): $pp \rightarrow t\bar{t}H, b\bar{b}H$
 - MCFM (Campbell, Ellis): $pp \rightarrow (W, Z) + (0, 1, 2) j$, $(W, Z) + b\overline{b}, V_1V_2, \dots$
 - NLOJET++ (Nagy): $pp \rightarrow (2,3) j$, $ep \rightarrow (3,4) j$, $\gamma^* p \rightarrow (2,3) j$
 - VBFNLO (Figy et al.): $pp \rightarrow (W, Z, H) + 2j$
- Recent:
 - $pp \rightarrow Wb\bar{b}, m_b \neq 0$ (Cordero, Reina, Wackeroth hep-ph/0606102)
 - $pp \rightarrow t\bar{t}j$ (Dittmaier, Uwer)
 - $e^+e^- \rightarrow 4f$: first complete $2 \rightarrow 4$ result (Denner, Dittmaier et al. hep-ph/0505042)

Automating NLO calculations

- Sticking point: loops for $n = 5, 6, \ldots$ external legs
 - Numerics complicated by soft, collinear singularities
 - Reduction to master integrals induces fictitious singularities
 - Many mass scales and internal thresholds complicate both singularity extraction and numerics

Much recent activity:

- Expand reduction coefficients around fictitious singularities (Denner, Dittmaier)
- Numerical solution of reduction equations (R. K. Ellis, Giele, Glover, Zanderighi)
- Sector decomposition for singularity extraction (Binoth, Heinrich)
- Contour deformation (Nagy, Soper)
- Twistor-inspired (C. Berger, Bern, Dixon, Kosower; Britto, Cachazo, Feng; ...)
- ⇒ both traditional analytic and new semi-numerical methods

Extracting Higgs couplings

Measure *HWW* coupling with WBF (ATLAS; E. Berger, Campbell)

Background: QCD Hjj $300000 \Rightarrow$ Higgs production now a background!

• Separate S, B with kinematics

Signal: WBF

- Uncertainty dominated by $\delta S/S$, $\delta B/B$ $\delta B/B = \pm 20\%$, $\delta S/S = \pm 4\%$ (ATLAS) $\delta B/B = \pm 30\%$, $\delta S/S = \pm 10\%$ (BC)
- Estimate $\delta g/g \approx 10\%$ after $200 \, {\rm fb}^{-1}$ (BC)
- Background known only at LO
 - \Rightarrow need NLO computation of QCD Hjj production

H+2 jets at NLO

- QCD corrections to Hjj recently computed (Campbell, Ellis, Zanderighi hep-ph/0608194)
 - First output from semi-numerical methods for NLO computations

- Residual scale dependence greatly reduced
- $\sigma_{NLO}/\sigma_{LO} = 15 25\%$; corrections are kinematic-independent
- How generic is this feature for relevant $2 \rightarrow n$, $n \ge 3$ observables?

Higgs discovery at higher orders

- NLO important for discovery
 - Important Higgs mode for $140 < m_H < 180 \text{ GeV}$ is $gg \rightarrow H \rightarrow WW \rightarrow ll\nu\nu$
 - Cannot reconstruct mass peak; rely upon kinematic distributions

- NLO $pp \rightarrow WW$ background correction large: $\sigma_{NLO}/\sigma_{LO} > 1.5$
- Loop-induced $gg \rightarrow WW$ formally NNLO; enhanced by $\Delta \phi_{T,ll} < 45^{o}$
- ⇒ further increases background by 30% (Binoth et al., Dührssen et al. hep-ph/0504006, hep-ph/0611170)

Di-photon production

• $pp \rightarrow \gamma \gamma$ important for Higgs discovery and measurements

- Many subtle effects to include in background calculation:
 - $gg \rightarrow \gamma \gamma$ subprocess formally NNLO but large
 - Resummation for low $q_T^{\gamma\gamma}$ (Balazs, E. Berger, Nadolsky, Yuan hep-ph/0603037)

- Resummation only in RESBOS; large sensitivity to tuneable parameters in DIPHOX fragmentation \Rightarrow do we really understand low $\Delta \phi$ region?
- Need better understanding, especially when 1 fb^{-1} is analyzed

Combining NLO with parton showers

Fixed order, parton showers complimentary

- PS: universal, hadronization, detector simulation
- FO: correct rates, hard emissions, reduced and quantifiable errors
- ⇒ want the advantages of both approaches!

- MC@NLO (Frixione, Webber)
- Smoothly matches soft/collinear (MC) and hard (NLO) regions
- Unweighted events, NLO normalization
- Available for $W,Z,H,\gamma^*,bar{b},tar{t},WW,ZZ,WZ,tb$

- Recent detailed study for LHC top production (Mangano et al. hep-ph/0611129)
- Work on alternate implementations (Giele, Skands; Bauer, Schwartz)

Status of NNLO calculations

When is NNLO needed?

- When corrections are large (*H* production, fixed target energies for pdfs)
- For benchmark measurements, where expected errors are small ($W, Z, t\bar{t}$ production)

What is known?

- Several inclusive $2 \rightarrow 1$ processes (W, Z, H production) (van Neerven, Harlander, Kilgore, Anastasiou, Melnikov, Ravindran, Smith)
- A few "semi-inclusive" $2 \rightarrow 1$ distributions (W, Z rapidity distributions) (Anastasiou, Dixon, Melnikov, FP)
- Fully differential $2 \rightarrow 1$ result ($pp \rightarrow H, W, Z + X$) (Anastasiou, Melnikov, FP)
- DGLAP splitting kernels (Moch, Vermaseran, Vogt)
- \Rightarrow Generalization to $2 \rightarrow 1$ processes $(pp \rightarrow jj, t\bar{t})$ very difficult

W, Z production at hadron colliders

- $q\bar{q} \rightarrow (W,Z) \rightarrow (l\nu,ll)$: numerous important applications
 - M_W : important contraints on m_H and new physics through global EW fit
 - Provide pdf information at fixed-target and high energies:
 - $\Rightarrow \text{ for example, } A_l(\eta) = \frac{d\sigma(e^+)/d\eta d\sigma(e^-)/d\eta}{d\sigma(e^+)/d\eta + d\sigma(e^-)/d\eta} \approx \frac{d(x)}{u(x)}$
 - Calibration of detectors (lepton energy scale)
 - Luminosity determination to the percent level (Dittmar et al.)
 - Distinguish different Z' scenarios (Rizzo hep-ph/0610104)
 - **.**..
- W, Z production are benchmark processes
- \Rightarrow need percent-level theory, reliable error estimates

Components of the theory calculation

- Myriad issues to consider:
 - Fixed order QCD to NNLO: $\mathcal{O}(\alpha_s^2)$
 - Resummation of $\ln(M_{ll}/q_T^W)$ for low q_T^W observables (RESBOS: Balazs, Nadolsky, Yuan)
 - $\mathcal{O}(\alpha)$ EW corrections (U. Baur, Wackeroth et al.), particularly FSR
 - Possible resummation in $x \rightarrow 0, 1$ limits
 - ⇒ this and more reviewed in Nadolsky hep-ph/0412146

Further complication:

- W, Z are spin-1: "spin correlations" between production, decay: $p_q \cdot p_l$
- With typical Tevatron/LHC cuts, these are a 10% effect at NLO
- ⇒ imposes a difficult requirement on NNLO calculations, can't separate production and decay channels

Results at NNLO

• NNLO QCD result for W, Z production (Melnikov, FP hep-ph/0609070)

• Contains spin correlations, finite-width effects, $\gamma - Z$ interference, all kinematics

- Residual scale dependences < 1% for standard cuts
- Comparison with recent CDF result for forward W production; take ratio of $|\eta_e| < 1$ over $1 < |\eta_e| < 2.8$ $R_{c/f}^{CDF} = 0.925(33); R_{c/f}^{NLO} = 0.940(12); R_{c/f}^{NNLO} = 0.927(2)$

⇒ potential stringent constraint on pdfs with more data

Higgs coupling extractions

Analyses of Higgs couplings use relation

$$\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{TH}}{\Gamma_p^{TH}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

- ⇒ calculate and assign theoretical uncertainty to σ/Γ , extract $\Gamma_p\Gamma_x/\Gamma$ ⇒ new states in loops should drop out from theory ratio, just QCD+PDFs
- Studies assign $\pm 20\%$ uncertainty to σ/Γ for $gg \to H$ production mode (Duhrssen et al.)

$$\Gamma \sim \alpha(\mu_R)^2 C_1(\mu_R)^2 \{ 1 + \alpha(\mu_R) X_1 + \ldots \}$$

$$\sigma \sim \alpha(\mu_R)^2 C_1(\mu_R)^2 \{ 1 + \alpha(\mu_R) Y_1 + \ldots \}$$

- Scale variation correlated, large μ_R variation cancels; $\Delta(\sigma/\Gamma) = \pm 5\%$ (Anastasiou et al., hep-ph/0509014)
- Recent work:
 - N³LO soft+virtual corrections to $\sigma_{gg \rightarrow H}$ (Moch, Vermaseran, Vogt hep-ph/0508265)
 - N³LO corrections to Γ_{gg} (Baikov, Chetyrkin hep-ph/0604194)
 - $\Delta \sigma: \pm 10\% \rightarrow \pm 3 4\%; \Delta \Gamma: \pm 5\% \rightarrow \pm 1 2\%$
- Need inclusion of these effects in Higgs coupling studies!

Conclusions

Need more work on QCD tools for LHC physics!

- Need fixed order QCD+resummation to verify, improve MC generators
- Must accurately quantify, reduce uncertainties; test at HERA, Tevatron

Highlights:

- Test of ME+PS merging on Tevatron Z+jets
- $pp \rightarrow WW$ background shows importance of NLO signal, background calculations \Rightarrow also interplay between higher orders and experimental cuts
- Theory progress on automated NLO coming! First result: $pp \rightarrow Hjj$ for HWW coupling determination
- Di-photon results from Tevatron show importance of careful QCD analysis: resummation, fragmentation needed to describe all regions of phase-space
- Differential W, Z result at NNLO with spin correlations for acceptances
 - Tested on Tevatron data, potential pdf implications
 - Tevatron luminosity analysis?
- Challenging and important work to do!