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Motivation

If our current particle picture of Dark Matter is correct, the LHC is
likely to be a Dark Matter factory. Realistic models containing a Dark
Matter particle tend to be very similar.

• A symmetry is added to keep Dark Matter stable → Dark Matter
is produced in pairs.

• Symmetries which keep Dark Matter stable are often taken from
other sources (because we prefer as simple a model as possible),
such as:

– Proton Stability (R-Parity in SUSY)

– Custodial Symmetry (solving Little Hierarchy Problem)

– 5D momentum conservation (KK number conservation in UED)

“Other Sources” for the symmetry generically means “Other Par-
ticles”.



Other Particles

Other Particles means that the Dark Matter is generically produced

from the decay of a heavier particle which has SM quantum numbers.

(such as a squark, slepton, T-Parity-odd fermion, etc)

All masses require one to add the missing particle to a visible par-

ticle. Therefore expected signatures of new physics contain no way

to directly obtain the mass of a particle, from the 4-vectors in the

event.

e.g. In a visible decay Z → l+l−, it is trivial to get a consistent

estimator for the Z mass: m2 = (pl+ + pl−)
2. This estimator m2

has the property that its mean, 〈m2〉 converges to the Lagrangian

parameter M2
Z. This provides the strongest available indicator (to

cut on) indicating that this is a Z.

For events with missing particle, no such thing is possible. (yet!)



Existing Studies (Barr Method)

Existing studies all on fit-

ting distribution in a vari-

able correlated to masses. If

we must rely on such things,

this is troublesome

• Mass determinations are

very sensitive to a small

number of events (those

occuring at inflection

points and endpoints).

• Detector resolution

makes all (Barr-type)

distributions look

similar.

[Gjelsten, Miller, Osland

hep-ph/0410303]



Existing Studies: Cross Sections as Probability

Densities

What are these studies doing, from a theoretical/statistics perspec-

tive? First let us define a probability distribution for an event. A

cross section generally is given by
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is a zero-dimensional projection of a high-dimensional phase space,
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to retain all information in the high-dimensional space.
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this is a probability density expressing the probability of a particular

configuration of momenta. For N external particles, it is a 3N − 4

dimensional space.



Cross Sections as Probability Densities II
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In principle, one could directly compare this PDF (Probability Density

Function) between simulated events and data. But, high-dimensional

spaces require a lot of data to map out.

So, let us project this PDF onto a lower dimensional space.
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2x.

In this way we can obtain the shape of any distribution. All one-

dimensional variables can be obtained in this manner, by performing

an appropriate projection.



Projections Lose Information

Any projection generically loses information, unless it is an optimal
estimator for the parameter of interest.

An optimal estimator is one that factorizes. For example in Z → l+l−,

P (X|Y ) = P (m|MZ)P (X −m|Y −MZ) (2)

where by X − m and Y − M I mean all other observables except
m2 = (pl+ + pl−)

2 and all other parameters except MZ.

Factorizations are only approximate in collider physics. (e.g. up to
interference effects)

The Neyman-Pearson lemma tells us that the most powerful statistic
for differentiating two hypotheses Y and Y(n−1) is the ratio of two
Likelihoods. Our Likelihood is

L(Y|X,X′) =
N∏

i=1

P (xi,x
′
i|Y).

Doing this is commonly called “Matrix Element Methods”.



Estimators

Matrix Element Methods are powerful, but also complicated. (We
have several projects in progress on this)

Let’s try something simpler. What can we do with just phase space?
(assuming the Matrix Element is a constant) Our good estimators
such as (p1 + p2)

2 are just phase space!

To examine this, let us choose the tt̄ di-lepton topology, which is
identical to many interesting SUSY decay topologies.
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p6
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We have generalized the meth-

ods I will describe to any pro-

cess with exactly 2 missing par-

ticles, and 2 or more visible par-

ticles.

The vector p0 is the initial

state. This diagram is kine-

matic. e.g. this all works for

t-channel production.



Changing Variables

If we want to talk about masses, the first thing we had better do is
change variables.

The tt̄ di-lepton topology at the LHC contains 4 kinematic unknowns,
which is nice because it also has 4 unknown masses.
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2
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2
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2
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2
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This variable change is non-linear, and incurs a Jacobian J (important
if you want to integrate your Probability Density in the mass basis!)



Changing Variables, ctd. . .

Writing the same thing in integral form, first write the PDF with the

Dark Matter’s mass constraint explicitly.

P (X|Y) = f(X,Y)
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Simplified Likelihood

Let us try to characterize what’s going on in mass space, by con-

structing the likelihood L(Y|X) =
∏

i Pi(X|Y) in the narrow width

approximation. Note that our δ(a− (p1 + p3)
2) (etc) is exactly what

would arise from a Matrix Element containing narrow widths.

This is identical to taking the integrand to be 1 after our variable

change. The P (X|Y) is zero in regions where the variable change

cannot be performed (would result in complex E, p).

It’s also equivalent to answering the question: Given two events, what

is the region in mass space that is compatible with both events?

We extend to N events and ask what region is consistent with all

events. (no resolution, detector simulation, or combainitorics here)







Reading Graph Voodoo

These graphs clearly contain the correct masses.

Now we’ve got a problem: How do we extract the masses? Most

things you might think of are in general biased, inconsistent, or non-

convergent.

The remaining region is a volume. What do I report as my mass?

What are the error bars?

Inconsistent estimator: converges to the wrong value.

Biased estimator: asymmetric convergence. The central value is

systematically above or below for low statistics.

Inconsistent and Biased estimators can still be used, and require the

sort of tricks we’re used to: do a full simulation of the signal for a

given set of masses, and wiggle the masses to optimize fits of shapes.



You’re beginning to feel dizzy

Let’s look in more detail at what’s going on.

What we have plotted is the region of mass space consistent with an

event. This comes from our variable change:

The variable change to mass space results in two quadratic equations.

A = a11E2
1 + a12E1E2 + a22E2

2 + a1(m)E1 + a2(m)E2 + a0(m, m2)

B = b11E2
1 + b12E1E2 + b22E2

2 + b1(m)E1 + b2(m)E2 + b0(m, m2)

where the mass dependence is as indicated. The preceeding graphs

have P (X|Y) = 1 when this system has a solution, P (X|Y) = 0 when

it does not.

These are two equations of ellipses of fixed eccentricity. Moving

around in mass space corresponds to translating and scaling the size

of the ellipses.



J. Random Event



You’re getting dizzier. . .

These ellipses can also be written using the vector xi = (E1, E2,1) as

A = xif
ijxj = 0, B = xig

ijxj

using the tensors

f ij =

 a11 a12 a1(m)
a12 a22 a2(m)

a1(m) a2(m) a0(m, m2)
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 b11 b12 b1(m)
b12 b22 b2(m)

b1(m) b2(m) b0(m, m2)


For determining masses, we only care about whether a solution exists,

not the actual values of E1, E2. Therefore, without loss of generality,

we are free to rotate, translate, and scale the vector xi.

f ij =

 1 0 0
0 1 0
0 0 −r2(m, m2)
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x2 + y2 − r2(m, m2) = 0
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



The room is spinning

The surface of mass is defined by where these two ellipses touch

at a single point. This is an 8th order polynomial in masses, and

encapsulates all information and correlations in the event.

How do we get a mass out of this?

If the region were finite, we could use the centroid

〈m〉 =

∫
mS(m)dm∫
S(m)dm

but this is not defined because the volume is infinite.

Another way to find the centroid is to find the extrema, solving the

system

S(m1, m2) = 0,
∂

∂m1
S(m1, m2) = 0



The Dizzy Mass

The Dizzy Mass is:

The mass defined by the centroid of the region in mass space that is

kinematically compatible with the event

This method produces an estimator for each mass in the event (in-

cluding the Dark Matter!) for every event!

One can simply put this value in a histogram, fit it, cut it, slice it

and dice it.

We will distribute code to compute this.



Golden Events

Some events have the property that one Energy ellipse can fit inside

the other. This means there is a hole in the allowed mass region.

We call these “Golden Events” because when intersected with a non-

golden event, very little volume remains.

It is these events that cut off the infinite-mass solutions when inter-

sected.

All events have this inner surface, but for most events it corresponds

to going from 2 solutions for (E1, E2) to 4 solutions. (e.g. the ellipse

is to large to fit inside the circle)

Therefore it is the inner mass surface that provides good estimators.

The outer surface always allows infinite Mt and Mν = 0.
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Summary/Conclusions

Existing techniques (shapes/edges) are in general biased, inconsis-

tent, and very sensitive to a small number of events.

We present a new estimator for masses in events with missing energy,

the Dizzy Mass defined by the centroid of the region in mass space

that is kinematically compatible with an event.

We will provide a C++ code to compute the Dizzy Mass for use by

everyone.

A proper estimator means: Statistical errors scale properly with the

number of events.


