

Searches with Multi-Lepton Signatures at the LHC

Bing Zhou The University of Michigan

Jan. 8, 2007 At Aspen-07 Conference

The Large Hadron Collider at CERN Energy = 14 TeV, Lumi = 10³⁴ cm⁻² s⁻¹

LHC Missions: Explore new physics in TeV energy scale

First Beams: Fall 2007 Physics Runs: from Spring 2008 ~ few fb⁻¹ in 1st year

ATLAS and CMS Detectors

> 10 years of hard work in design and constructions

ATLAS

Length : ~45 m Diameter : ~24 m Weight : ~ 7,000 tons Electronic channels : ~ 10⁸ Solenoid : 2 T Air-core toroids

Excellent Standalone Muon Detector

CMS

Length : ~22 m Diameter : ~14 m Weight : ~ 12,500 tons Solenoid : 4 T Fe yoke Compact and modular

Excellent EM Calorimeter

Lepton Signals Are the Keys for Discovery !

- Lepton identifications: high efficiency, low fake rate
- Excellent energy and momentum resolution
- Trigger at low Pt
- Clean Signature for new physics discoveries!
- Detector can be well understood from $Z \rightarrow \ell^+ \ell^-$ events

	ATLAS (A Toroidal LHC Apparatus)	CMS (The Compact Muon Solenoid)
TRACKER	Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	$\frac{PbWO_4 \text{ crystals}}{\sigma / E \sim 2-5\% / \sqrt{E}}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (> 10 λ) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Brass-scint. (≥ 5.8+catcher) σ/Ε ~ 100%/√Ε ⊕ 0.05
MUON	MDT, CSC, RPC, TGC σ/p _T ~ 7 % at 1 TeV <u>standalone</u>	DT, CSC, RPC $\sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

High Precision Tracking for Muon Detections

 $|\eta|$ coverage to 2.7, $\Delta p/p \sim 8\%$ @ 1TeV ($\sigma_{\text{tracking}} \sim 50 \mu$)

Simulation of a $H \rightarrow \mu\mu$ ee event in ATLAS

Barrel Sagitta σ vs Beam Energy

- Barrel: good agreement between data and G4 Simulations (solid curves) (important for simulation validation)
- Threshold effect on the intrinsic resolution

- EC sagitta calculated according to the nominal material distribution
- Agreement of the measurements with G4 is good, correction for the aluminum support bar applied

CMS: Muon Detection Resolution

Resolution with new reconstruction at $\eta\text{=}0.68$

Local energy resolution well understood since Module O beam tests and well reproduced by simulation :

-Sampling term given by lead/argon sampling fraction and frequency : quality control measurements during construction

- Noise term under control

- Local constant term (within a cell) given by impact point correction

→Uniformity is at 1% level quasi online but achieving ATLAS goal (0.7 %) needs a lot of work, and most of the time was used to correct for setup problem...

- The last(8-th) Barrel Toroid coil installed in Aug. 2005

D

- Barrel calorimeter (LAr EM + HAD Fe/Scint. Tilecal) in final position at Z=0 (Nov. 2005)
- Barrel toroid: cool down completed, first tests towards full field started in Sep. 2006

ATLAS Barrel muon system complete

Endcap Muon Big-Wheel installation Started in June 2006

TGC Big-Wheel (C-1)

MDT Big-Wheel (C)

CMS: Magnet Test and Cosmic Challenge

Detector installation to pit started in Dec. 2006

Detector Performance & Physics Studies (TDRs)

CSC (Computing System Commissioning) notes are to be produced in spring 2007, covering software and physics analysis validation for the early physics run with 0.1 fb⁻¹ and 1 fb⁻¹.

Instead of 3-rd vol. of TDR, short notes on startup will be submitted to LHCC in summer 2007, along with the very early physics reach with 0.1 fb^{-1} and 1 fb^{-1} .

Search for New Physics Studies

SM Higgs <i>H</i> ⁰	Look for final states with ℓ , and γ :
	<u>$H \rightarrow \gamma \gamma$</u> , $H \rightarrow bb$ (with tt or W with lepton decays), $H \rightarrow \tau \tau$ (via VBF),
	$\underline{\mathrm{H}} ZZ^*/ZZ \ell^+ \ell^- \ell^+ \ell^-, \ \ell^+ \ell^- \forall \vee, \ \ell^+ \ell^- jj, \ \mathrm{H} \mathrm{WW}^* \ell^+ \vee \ell^- \vee \mathrm{or} \ \ell \vee jj$
	(via BVF)
Extended Models	SM-like: $h \rightarrow \gamma\gamma$, bb; $H \rightarrow 4\ell$
H ⁰ ,h ⁰ ,A ⁰ ,H ⁺ H ⁻ & H++, H	MSSM-specific: $A/H \rightarrow \mu\mu$, $\tau\tau$; $H \rightarrow hh$, $A \rightarrow Zh$; $H^{\pm} \rightarrow \tau\nu$ $A/H \rightarrow \chi^{2}_{0} \chi^{2}_{0} \rightarrow 4\ell$ + missing Energy
Supersummetry	Like-sign leptons, multi-leptons and Jets with Missing ${\bf E}_{\rm T}$
Heavy Q \overline{Q}	$\mathbf{Q} \rightarrow \mathbf{W} \mathbf{q} \rightarrow \boldsymbol{\ell} + \mathbf{jets}$
New bosons Z', W'	$\underline{Z' \rightarrow \ell^+ \ell^-, \ W' \rightarrow \ell_{V}}$
Technicolor	$\rho_{T} \rightarrow WZ \rightarrow \boldsymbol{\ell}_{V} \boldsymbol{\ell}_{P}, \rho_{T} \rightarrow W \pi \rightarrow \boldsymbol{\ell}_{V} \mathrm{b} \mathrm{b}$
L/Q structure	Pp→ LQ LQ → $\ell q \ell q$: High-mass di-leptons, Missing E_T
Extra-dimension	High-mass di-leptons, narrow lepton resonances, Jets+Missing \mathbf{E}_{T}
Composite Models	pp→L ⁺ L ⁻ → ZZ+2leptons → 6 leptons, pp→ ee [*] → ee _γ
Strongly-couples Vector-bosons	High mass spectra: $W_L Z_L \rightarrow W_L Z_L \rightarrow e_V ee$, $Z_L Z_L \rightarrow Z_L Z_L \rightarrow ee ee$ $W_L W_L \rightarrow Z_L Z_L \rightarrow ee ee$

New Physics with Multi-lepton Final States

Single lepton	SM: $W \rightarrow \ell v$ $W + jets \rightarrow \ell v + x$ $tt/bb \rightarrow \ell + x$	$W' \rightarrow \ell v$ $H \rightarrow bb + W/tt(with W \rightarrow \ell v)$ $H \rightarrow WW^* \rightarrow \ell v jj (via BVF)$ $\rho_T \rightarrow W\pi \rightarrow \ell vbb$ $Q \rightarrow W q \rightarrow \ell + jets$
Di-lepton	SM $Z/\gamma^* \rightarrow \ell^+ \ell^-$ $Z+jets \rightarrow \ell^+ \ell^- +x$ $tt/ww \rightarrow \ell^+ \ell^- +x$	H→WW*→ $\ell^+\nu \ell^-\nu$ A/H → µµ, ττ Like-sign dileptons from SUSY particle decays High mass narrow resonances: Z'→ $\ell^+\ell^-$, G*→ $\ell^+\ell^-$, pp→ LQ LQ → $\ell q \ell q$ pp→ ee*→ eeγ
Triple-lepton	SM WZ → e v ee	$\rho_{T} \rightarrow WZ \rightarrow \ell_{V} \ell \ell$ $W_{L}Z_{L} \rightarrow W_{L}Z_{L} \rightarrow \ell_{V} \ell \ell$ $pp \rightarrow W^{*} \rightarrow \chi_{1}^{+}\chi_{2}^{0} \rightarrow W + \chi_{1}^{0} + Z^{*}\chi_{1}^{0} \rightarrow \ell \ell \ell + \text{Missing } E_{T}$
Four-leptons Six-leptons	SM ZZ→ ℓ+ℓ-ℓ+ℓ-	H→ ZZ*/ZZ → $\ell^+ \ell^- \ell^+ \ell^-$ A/H → $\chi^2_0 \chi^2_0 \rightarrow 4\ell$ + missing Energy Z _L Z _L → Z _L Z _L → $\ell \ell \ell \ell \ell$, W _L W _L → Z _L Z _L → $\ell \ell \ell \ell \ell$ pp→L+L ⁻ → ZZ+2leptons → 6 leptons

Study based ATLAS CSC data sample: Z $\rightarrow \mu\mu$

Fake μ rate as a function of Muon **P**_T

Full simulation: tt $\rightarrow \mu + x$ (1M events), Z $\rightarrow \mu\mu$ (1M events)

CMS

Benchmark Studies on Muon Final States

Unique feature of the ATLAS

High Pt Muon Charge Identification is Essential for new physics

CMS: Electron Detection Performance Studies

CMS: Benchmark Studies: $H \rightarrow 4e$

Higgs Discovery Channels at LHC

CMS

τ-ID efficiencies

- Construct variable that combines all cut variables
- Compare signal and bckgnd
- Can vary cut to get need rejection

VBF H \rightarrow $\tau\tau$ **Reconstruction**

0.5

1.5

-0.5

- Assume ℓ and ν 's from $\tau \rightarrow \ell \nu \nu$ are collinear.
- Label visible energy fractions x_{τ_1} and x_{τ_2} .
 - Assume \overrightarrow{p}_T vector comes from the ν 's, and solve the equations for x_{τ_1} and x_{τ_2} .

CMS Studies: $H \rightarrow \tau \tau$

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
N_S at 30 fb ⁻¹	10.5	7.8	7.9	3.6
$ m N_B$ at 30 fb ⁻¹	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_{\rm B} = 5.9\%$)	5.67	5.26	5.64	3.19

- $BR(H \rightarrow WW)$ is nearly 98% for a Higgs boson with $m_H \approx 160$ GeV.
- Backgrounds from WW, $t\bar{t}$, WZ.
- Use the lepton spin correlations:

• No mass peak, have to use m_T :

$$m_T = \sqrt{2p_T^{\ell\ell} E_T (1 - \cos \Delta \phi)}$$

Discovery Sensitivity

	10
m _H	(GeV/c ²)

CMS PTDR			ATLAS		
NLO cut based	NLO optimized*	TDR (LO)	New, NLO Cut based	New, NLO likelihood	
6.0	8.2	3.9	6.3	8.7	

MSSM Higgs Discovery Potential

At large tan eta:

decays into WW, ZZ and $\gamma\gamma$ are suppressed.

CCMS

No light Higgs boson? Study Longitudinal gauge boson scattering in high energy regime (the L-component which provides mass to these bosons).

$$W_{L}Z_{L} \longrightarrow W_{L}Z_{L} \longrightarrow I \vee II$$

 $W_L W_L \rightarrow Z_L Z_L \rightarrow 4$ leptons $Z_L Z_L \rightarrow Z_L Z_L \rightarrow 4$ leptons

Strong Symmetry Breaking: Technicolor

CMS

ATLAS

No fundamental scalar Higgs (it is a new strong force bounded state) Technicolor predicts existence of technihadron resonance: $\rho_T \rightarrow WZ \rightarrow w + v$

34

- Provide candidate particles for Dark Matter (LSP)
- Higgs mass calculable
- Unification
- Path to gravity: local supersymmetry → supergravity

 $\begin{array}{l} m_{1/2}: \mbox{ universal gaugino mass at GUT scale} \\ m_0: \mbox{ universal scalar mass at GUT scale} \\ tan_{\beta}: \mbox{ vev ratio for 2 Higgs doublets} \\ sign(\mu): \mbox{ sign of Higgs mixing parameter} \\ A_0: \mbox{ trilinear coupling} \end{array}$

Need study many benchmark points...

The distribution of the invariant mass of the two leptons can be shown to have <u>a kinematic edge</u>

$$(m_{ll}^{\max})^2 = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

SM Higgs	100 GeV ~ 1 TeV (30 fb ⁻¹)
MSSM Higgs	covers full (m_A , tan β)
SUSY (squark, gluino)	~ 3 TeV (300 fb ⁻¹)
New gauge bosons (Z')	~ 5 TeV (100 fb ⁻¹)
Quark substructure ($\Lambda_{\rm C}$)	~ 25/40 TeV (30/300 fb ⁻¹)
q*, l*	~ 6.5/3 TeV (100 fb ⁻¹)
Large ED (M _D for n=2,4)	~ 9/6 TeV (100 fb ⁻¹)
Small ED (M _C)	~ 6 TeV (100 fb ⁻¹)
Black holes	< 6 ~ 10 TeV

Any one of those would change the understanding of our universe!

Additional slides

CMS: Muon Trigger Studies

Figure 2.16: Level-1 single-muon trigger efficiency in the barrel (a) and in the endcaps (b) as a function of the generated muon $p_{\rm T}$, when a threshold of 20 GeV/*c* is chosen for the Level 1 single muon trigger output, in fast (dots) and full (curve) simulations.

Figure 2.17: (a) Overall Level-1 and High-level trigger efficiency for single muons, as a function of the generated η , and (b) reconstructed dimuon mass spectra in events where a Higgs particle decays into $\mu^+\mu^-$, in fast (dots) and full (curve) simulations.

Overall Efficiency of Electron ID

- Measure when possible using real data:
 - W from no-track trigger to measure tracking efficiency
 - Z with one tight electron and with loose selection
- Use simulation to extrapolate kinematics and correct for environmental issues (eg isolation)

Atlas Studies: $H \rightarrow \tau \tau$

4 production mechanism \rightarrow key to measure H-boson parameters