B Leptonic and Electroweak Penguin Decays

Steven Robertson
Canadian Institute of Particle Physics

for the
BABAR Collaboration

2007 Aspen Winter Conference on Particle Physics

Aspen, Colorado, January 8-13 2007

Outline

- Rare B decays and New Physics
- Leptonic B decays:

$$
\begin{aligned}
& \mathbf{B}^{+} \rightarrow \boldsymbol{\tau}^{+} \mathbf{v} \\
& \mathbf{B}^{+} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{v} \text { and } \mathbf{B}^{+} \rightarrow \mathbf{e}^{+} \mathbf{v}
\end{aligned}
$$

Radiative modes: $\mathrm{B}^{+} \rightarrow \boldsymbol{l}^{+} \mathbf{v} \gamma$

- Electroweak FCNC processes:

$$
\begin{aligned}
& \mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s} / \mathrm{d}} \boldsymbol{\gamma} \\
& \mathbf{B} \rightarrow \mathbf{K}^{(+)} \boldsymbol{l}^{+} \boldsymbol{r}
\end{aligned}
$$

- Conclusions

Why Rare Decays?

Overall Unitarity Triangle determination from tree and $\Delta F=2$ processes ($\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ and K mixing) is consistent with Standard Model expectations

- presentation by P. Dauncey (Weds morning)
- implies that the scale associated with New Physics is $\gg 1 \mathrm{TeV}$ unless "phase" of New Physics is the same as the SM phase

Minimal Flavour Violation (MFV) - Potentially large non-SM effects in rare meson decays even in absence of evidence of new physics in the (tree-level) UT determination

Leptonic B decays

Leptonic B decays are helicity-suppressed EW tree processes in the SM:

$$
\begin{aligned}
& \text { Standard Model Rates } \\
& \begin{array}{c}
\mathrm{B}\left(B^{+} \rightarrow \tau^{+} v\right) \\
\mathrm{B}\left(B^{+} \rightarrow \mu^{+} v\right) \sim 4 \times 10^{-4} \\
\mathrm{~B}\left(B^{+} \rightarrow \mathrm{e}^{+} v\right) \sim 10^{-12}
\end{array}
\end{aligned}
$$

$$
\mathcal{B} r\left(B^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G^{2}}{8 \pi}\left|V_{u b}\right|^{2} f_{B}^{2} \eta \iota_{B} m_{\ell}^{2} \tau_{B}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2}
$$

New physics contributions can arise from diagrams with internal lines containing non-SM particles:

Charged Higgs, scalar sparticles in R-parity violating models, PatiSalam leptoquarks

$\mathrm{B}^{+} \rightarrow \tau^{+} \mathrm{V}$

Large SM branching fraction, but experimentally challenging due to presence of several final states with multiple neutrinos

- few kinematic constraints which can be exploited for background suppression
Solution is to reconstruct the decay of the non-signal "tag" $\mathrm{B}^{\text {" }}$ in $Y(4 \mathrm{~S}) \rightarrow \mathrm{B}^{+} \mathrm{B}^{-}$in one of a large number of exclusive decay modes, then attribute all other particles to the decay of the "signal" B^{+} candidate
- $\mathbf{B}^{-} \rightarrow \mathbf{D}^{(*) 0} \mathbf{X}^{-}$Hadronic tags
- yield $\sim 2700 / \mathrm{fb}^{-1}$
$m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \quad \Delta E=E_{B}-E_{C M} / 2$
- $\mathbf{B}^{-} \rightarrow \mathbf{D}^{\mathbf{0}} \mathbf{I} v \mathbf{X}^{\mathbf{0}}$ Semileptonic tags
- yield $\sim 6000 / \mathrm{fb}^{-1}$
- presence of additional neutrino does not significantly impact analysis

Belle $\mathbf{B}^{+} \rightarrow \tau^{+} \mathbf{v}$ results

Belle recently reported first evidence for $\mathrm{B}^{+} \rightarrow \tau^{+} v$ based on $414 \mathrm{fb}^{-1}$ of data Phys. Rev. Lett. 97, 251802 (2006)

- signal modes: $\tau^{+} \rightarrow \mathrm{e}^{+} v \nu, \tau^{+} \rightarrow \mu^{+} v \nu$, $\tau^{+} \rightarrow \pi^{+} v, \tau^{+} \rightarrow \rho^{+}\left(\pi^{+} \pi^{0}\right) v, \tau^{+} \rightarrow \mathrm{a}_{1}^{+}\left(\pi^{+} \pi^{-} \pi^{+}\right) v$
- signal extracted from a fit to the $\mathrm{E}_{\mathrm{ECL}}$ distribution (sum of calorimeter energy not associated to either tag B or signal B candidates)

Observed an excess above background across all signal channels with $\mathrm{E}_{\mathrm{ECL}}$ shape compatible with signal:

$$
\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=
$$

$$
\left(1.79_{-0.49}^{+0.56}(\text { stat })_{-0.51}^{+0.46}(\text { syst })\right) \times 10^{-4}
$$

(3.5 σ significance)

BABAR Semileptonic tag analysis based on 324×10^{6} BB pairs

- Raw tag reconstruction efficiency ($6.77 \pm 0.05 \pm 0.10$) $\times 10^{-3}$
- signal modes: $\tau^{+} \rightarrow \mathrm{e}^{+} v v, \tau^{+} \rightarrow \mu^{+} v v, \tau^{+} \rightarrow \pi^{+} v, \tau^{+} \rightarrow \rho^{+}\left(\pi^{+} \pi^{0}\right) v$

Overall signal yield obtained by likelihood-based combination of observed yields in individual channels (with uncertainties included)

- Use "double-tagged" $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} 1-v \mathrm{X}^{0}$ events to validate $\mathrm{E}_{\text {extra }}$ and other systematics

Slight excess observed across all signal channels:

$$
\mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=(0.88 \pm 0.70 \pm 0.11) \times 10^{-4}
$$

(1.3o significance)

$$
\mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)<1.8 \times 10^{-4} @ 90 \% \mathrm{CL}
$$

- A previous BABAR analysis using a combination of hadronic and semileptonic tags on a smaller dataset reported $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \tau^{+} v\right)<2.6 \times 10^{-4}$ @ 90\% CL
(B. Aubert et al. PRD 73057101 (2006))

Combined $\mathbf{B}^{+} \rightarrow \tau^{+} v$ results

BABAR/Belle combination: $\mathbf{B}\left(\mathbf{B}^{+} \rightarrow \tau^{+} \boldsymbol{v}\right)=(1.31 \pm 0.48) \times 10^{-4} \quad(\sim 2.5 \sigma)$

- Comparison with "SM" can be interpreted either as constraint on $\left|\mathrm{V}_{\mathrm{ub}}\right|$ (taking f_{B} from lattice), or as a direct constraint on New Physics (taking $\left|\mathrm{V}_{\mathrm{ub}}\right| \mathrm{f}_{\mathrm{B}}$ from Unitarity Triangle fit)

$$
R_{B \tau \nu}=\frac{\mathcal{B}^{\operatorname{SUSY}}\left(B_{u} \rightarrow \tau \nu\right)}{\mathcal{B}^{\mathrm{SM}}\left(B_{u} \rightarrow \tau \nu\right)}=\left[1-\left(\frac{m_{B}^{2}}{m_{H^{ \pm}}^{2}}\right) \frac{\tan ^{2} \beta}{\left(1+\epsilon_{0} \tan \beta\right)}\right]^{2} \begin{aligned}
& \begin{array}{l}
\text { No lepton } \\
\text { flavour } \\
\text { dependence! }
\end{array}
\end{aligned}
$$

- Using "SM" value from UTFit: $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \tau^{+} v\right)=(0.85 \pm 0.13) \times 10^{-4}$

$B^{+} \rightarrow l^{+} v(l=e, \mu)$

$$
\begin{aligned}
& \mathrm{B}\left(B^{+} \rightarrow \mu^{+} v\right) \sim 4 \times 10^{-7} \\
& \mathrm{~B}\left(B^{+} \rightarrow \mathrm{e}^{+} v\right) \sim 10^{-12}
\end{aligned}
$$

Potentially large LFV effects entering at one-loop in e.g. SUSY grand unification scenarios: different enhancements of e, μ and τ modes
Can use the same B reconstruction method to search for other leptonic modes (e, μ):

- only 1 neutrino, so reconstruction of tag B completely constrains event kinematics:

- Signal B rest frame estimated from tag B 4-vector, permitting 2-body signal kinematics to be exploited:

$B^{+} \rightarrow l^{+} v(l=e, \mu)$

BABAR hadronic tagged analysis based on $229 \times 10^{6} \mathrm{BB}$ pairs

- observed 0 events in each of e and μ channels with expected backgrounds of a 0.23 and 0.12 events respectively

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \mathrm{e}^{+} v\right)<7.9 \times 10^{-6} \\
& \mathrm{~B}\left(\mathrm{~B}^{+} \rightarrow \mathrm{\mu}^{+} v\right)<6.2 \times 10^{-6} \\
& \text { at } 90 \% \mathrm{CL}
\end{aligned}
$$

Method free from experimental issues relating to background modeling and estimation, but currently statistically limited

- complementary approach to, but not (yet) fully competitive with, "inclusive" analysis method which has been used previously by BABAR, Belle and Cleo...

Inclusive $\mathbf{B}^{+} \rightarrow t^{+} \mathbf{v}(\boldsymbol{l}=\mathbf{e}, \boldsymbol{\mu})$ mpeososios $\mathcal{B}^{\boldsymbol{B}}$

Reconstruct accompanying B by 4-vector sum of particles recoiling against a high momentum lepton

- Recent Belle analysis based on $253 \mathrm{fb}^{-1}$:
- Efficiencies much higher than exclusive method, but also higher backgrounds:
 $\epsilon_{\mu}=(2.18 \pm 0.06) \% \quad \epsilon_{\mathrm{e}}=(2.39 \pm 0.06) \%$
- Extract signal from fit to M_{bc} distribution in region: $5.1<\mathrm{M}_{\mathrm{bc}}<5.29$; $-0.8(-1.0)<\Delta \mathrm{E}<0.4 \mathrm{GeV}$ for $\mu(\mathrm{e})$

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \mu^{+} v\right)<1.7 \times 10^{-6} \\
& \mathrm{~B}\left(\mathrm{~B}^{+} \rightarrow \mathrm{e}^{+} v\right)<0.98 \times 10^{-6}
\end{aligned}
$$

Experimental sensitivity within a factor of ~ 2 of $S M$ rate!

- Similar method has been used in previous publications by BABAR, Belle and Cleo

$B^{+} \rightarrow I^{+} v y(I=e, \mu)$

Presence of photon removes helicity suppression and hence universality of leptonic branching fractions is recovered

$$
\Gamma\left(B^{+} \rightarrow l^{+}{ }_{\nu \gamma}\right)=\alpha \frac{G_{F}^{2}\left|V_{u b}\right|^{2} m_{B}^{5}}{288 \pi^{2}} f_{B}^{2}\left(\frac{Q_{u}}{\lambda_{B}}-\frac{Q_{b}}{m_{b}}\right)^{2}
$$

- λ_{B} related to B light cone distribution amplitude
- $\mathrm{SM} \operatorname{Br}(\mathrm{B} \rightarrow l v \gamma) \sim(1-5) \times 10^{-6}$
(Korchemsky, Pirjol and Yan, Phys Rev D61, 114510, 2000)
Recent BABAR analysis based on 232M BB pairs:

$$
\begin{aligned}
& \operatorname{Br}(\mathrm{B} \rightarrow \mu v \gamma)<5.2 \times 10^{-6} \\
& \operatorname{Br}(\mathrm{~B} \rightarrow \mathrm{ev} \mathrm{\gamma})<5.9 \times 10^{-6} \\
& \operatorname{Br}(\mathrm{~B} \rightarrow \mathrm{lv} \mathrm{\gamma})<5.0 \times 10^{-6} \text { (combined) }
\end{aligned}
$$

- Experimental sensitivity approaching SM rate!

FCNC decays

Flavour changing neutral current (FCNC) processes do not occur in SM at tree level

- Loop-mediated processes can have large contributions from non-SM diagrams of same order as leading SM contributions:
 by t-quark contribution

Low-energy effective Hamiltonian for $\mathrm{b} \rightarrow \mathrm{s}$ (or d) transitions:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}=- & \frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu) \longleftarrow
\end{aligned} \begin{aligned}
& \text { Products of field operators } \\
& \\
& \\
&
\end{aligned} \begin{aligned}
& \text { (nonperturbative hadronic } \\
& \text { matrix elements; } \\
& \text { HQE in inverse powers of } \mathrm{m}_{\mathrm{b}} \text {) }
\end{aligned}
$$

- New Physics can enter via non-SM values of Wilson coefficients

Electroweak FCNCs

$\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s} / \mathrm{d}} \boldsymbol{\gamma}$

C_{7} (Photon penguin) only
Observables: branching fractions E_{γ} (or $\mathrm{m}_{\text {had }}$) spectrum, A_{CP}
$\mathrm{B} \rightarrow \mathbf{X}_{\mathrm{s} / \mathrm{d}} \mathrm{I}^{+} l^{-}$

$\mathrm{C}_{7}, \mathrm{C}_{9}$ (Vector EW) and C_{10}
Observables: (partial) branching fractions, dilepton $\mathrm{A}_{\mathrm{FB}}, \mathrm{A}_{\mathrm{CP}}$
$\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s} / \mathrm{d}} \mathbf{v} \mathbf{v}$

$\mathrm{C}_{10}{ }^{\mathrm{v}}$ only
Observables: branching fractions

C_{10} (Axial vector EW) only
Observables: branching fractions

$\mathbf{B} \rightarrow \mathbf{X}_{\mathrm{s}, \mathrm{d}} \boldsymbol{\gamma}$

Studies of radiative FCNC modes has become a major industry at the B factories

- precise determination of $\mathrm{b} \rightarrow \mathrm{s} \gamma$ in both inclusive and exclusive modes

Phys.Rev.Lett.97:171803,2006.
Phys.Rev.D72:052004,2005

- extraction of HQET parameters from photon energy spectrum
- beyond scope of this talk...
- recent observations of CKM suppressed $\mathrm{b} \rightarrow \mathrm{d} \gamma$ decays in exclusive modes

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \boldsymbol{\gamma}$

Inclusive B $\rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ measurement is one of the most sensitive indirect probes of New Physics

- Recent improvements to NNLO calculations resulted in a downward shift to the SM range for $B \rightarrow X_{s} \gamma$
- Experimental average now slightly high, effectively opening a window for New Physics!

$\mathrm{B} \rightarrow \mathrm{p}(770) \gamma$ and $\mathrm{B} \rightarrow \omega(782) \gamma$

CKM suppressed FCNC modes have simple relation to $\mathrm{b} \rightarrow \mathrm{s} \mathrm{\gamma}$ modes

- Comparison of rates for (exclusive) $\mathrm{b} \rightarrow \mathrm{d} \gamma$ and $\mathrm{b} \rightarrow \mathrm{s} \gamma$ can be used to extract off-diagonal CKM elements relating to top quark

$$
\begin{aligned}
& \pm \sim^{\sim r} \text { Weak annihilation correction } \\
& \Delta R=0.1 \pm 0.1 \\
& \text { Ali, Lunghi, Parkhomenko, PLB 595,323 (2004) } \\
& \begin{array}{c}
\frac{\overline{\mathcal{B}}[B \rightarrow(\rho / \omega) \gamma]}{\mathcal{B}\left(B \rightarrow K^{*} \gamma\right)}=\left|\frac{V_{t d}}{V_{t s}}\right|^{2}\left(\frac{1-m_{\rho}^{2} / M_{B}^{2}}{1-m_{K^{*}}^{2} / M_{B}^{2}}\right)^{3} \zeta^{2}[1+\Delta R] \\
\text { Flavour SU(3) breaking }
\end{array} \\
& \zeta=1.17 \pm 0.09 \\
& \text { (ratio of form factors from } \mathrm{LC} \text { sum rules) } \\
& \text { Ball and Zwicky, JHEP 0604, } 046 \text { (2006); Ball and Zwicky, hep-ph/0603232 }
\end{aligned}
$$

Experimentally challenging due to small signal branching fractions and high backgrounds

- substantial backgrounds due to photons arising from π^{0}, η and $\mathrm{b} \rightarrow \mathrm{s} \gamma$ decays

$B \rightarrow p(770) \gamma$ and $B \rightarrow \omega(782) \gamma$

Signal extracted from a maximum likelihood fit to signal + background

- $B \rightarrow \rho \gamma: m_{E S}, \Delta E, N N, \theta_{\text {helicity }}$
(4 parameters)
- B $\rightarrow \omega \gamma$: + Dalitz angle
(5 parameters)
-- Signal -- Background -S+B

$B \rightarrow(\rho / \omega) y$ results

Belle PRL 96, 221601 (2006)

BABAR hep-ex/0612017 to appear in PRL (316fb ${ }^{-1}$)

BABAR B $\rightarrow(\rho / \omega) \gamma$

Mode	$N_{\text {sienal }}$	Significance	$B F\left(10^{-6}\right)$
$B^{+} \rightarrow \rho^{+} \gamma$	$42.0_{-1.27}^{+14.0}$	3.8σ	$1.10_{-0.33}^{+0.37} \pm 0.09$
$B^{0} \rightarrow \rho^{0} \gamma$	$38.7_{-9.8}^{1+1.6}$	4.9σ	$0.79_{-0.20}^{+0.22} \pm 0.06$
$B^{0} \rightarrow \omega \gamma$	$11.0_{-5.6}^{+6.7}$	2.2σ	$0.40_{-0.20}^{+0.24} \pm 0.05$
Combined BF	6.4σ	$1.25_{-0.24}^{+0.25} \pm 0.09$	

Isospin test: $\quad \frac{\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)}{2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)}-1=-0.35 \pm 0.27$

Determination of $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$

Combination of BABAR and Belle
$\begin{aligned} & \begin{array}{l}\text { results premits extraction of } \\ \text { ratio }\left|\mathrm{V}_{\text {to }} / V_{\text {ts }}\right|\end{array}\end{aligned} \frac{\overline{\mathcal{B}}[B \rightarrow(\rho / \omega) \gamma]}{\mathcal{B}\left(B \rightarrow K^{*} \gamma\right)}=\left|\frac{V_{t d}}{V_{t s}}\right|^{2}\left(\frac{1-m_{\rho}^{2} / M_{B}^{2}}{1-m_{K^{*}}^{2} / M_{B}^{2}}\right)^{3} \zeta^{2}[1+\Delta R]$

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B} \rightarrow(\mathrm{\rho} / \omega) \gamma\left(10^{-6}\right)\right. \\
& 1.25_{-0.25}^{+0.24} \pm 0.09 \\
& 1.32_{-0.34+0.10}^{+0.3+0.09} \\
& 1.28_{+0.20}^{+0.20} \pm 0.06
\end{aligned}
$$

$$
\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|_{\rho / \mathrm{ov}}=0.202_{+0.016}^{+0.017}(\mathrm{exp}) \pm 0.015 \text { (th) }
$$

- Experimental uncertainties currently comparable to theory
Good agreement with results from B mixing (combination of B_{d} and B_{s})

(See also Ball, Jones, Zwicky hep-ph/0612081)

$\mathbf{B} \rightarrow \mathbf{K}^{(4)} r^{+} r$

$\mathrm{B} \rightarrow \mathrm{X}_{s} l^{+} l$ receives contributions from C_{7} (photon penguin), C_{9} (vector EW) and C_{10} (axial-vector EW)

- Also substantial long-distance contributions ($\mathrm{J} / \Psi \mathrm{K}$ and $\Psi(2 \mathrm{~s}) \mathrm{K}$)

Interference between contributing amplitudes produces asymmetries in lepton angular distribution

- $\mathrm{A}_{\text {FB }}$ sensitive to non-SM values of Wilson coefficients

$\mathrm{B} \rightarrow \mathrm{K}^{()^{+} r^{1} r}$ Results

Signals clearly visible for both $\mathrm{B} \rightarrow \mathrm{K} l^{+} l^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{*} l^{+} l^{-}$ in current BABAR (and Belle) data samples:

Signal extracted from fit to

- m_{ES} and $\Delta \mathrm{E}$ for $\mathrm{Kl}^{+} l$ l (2D)
- + $\mathrm{m}_{\mathrm{K} \mathrm{\pi}}$ for $\mathrm{K}^{*} l^{+}{ }^{-}$(3D)

$\mathrm{B} \rightarrow \mathbf{K}^{(i)} I^{+t}$ Branching Fractions

BABAR (209 fb ${ }^{-1}$) PRD 73, 092001 (2006)

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B} \rightarrow \mathrm{~K}^{+} l^{*}\right)=(0.34 \pm 0.07 \pm 0.02) \times 10^{-6} \quad(6.6 \sigma) \\
& \mathrm{B}\left(\mathrm{~B} \rightarrow \mathrm{~K}^{*} l^{+} l^{-}\right)=\left(0.788_{-0.17}^{+0.19} \pm 0.11\right) \times 10^{-6}
\end{aligned}
$$

Belle preliminary ($253 \mathrm{fb}^{-1}$) hep-ex/0410006

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B} \rightarrow \mathrm{Kl}^{+} l^{-}\right)=\left(0.550_{+0.75}^{+0.75} \pm 0.027\right) \times 10^{-6} \\
& \mathrm{~B}\left(\mathrm{~B} \rightarrow \mathrm{~K}^{*} l^{+} l^{-}\right)=\left(1.65_{-0.22}^{+0.23} \pm 0.11\right) \times 10^{-6}
\end{aligned}
$$

Determination of A_{FB}

BABAR and Belle have both reported first results of $A_{\text {FB }}$ determination in specific q^{2} regions with sensitivity to Wilson coefficients

- Favours SM value for C_{10} (high q^{2}) but less consistency in low q^{2} region

PRL 96251801 (2006)

Conclusion

Rare B decays are a very interesting place to look for New Physics!

- First indications of signal in $\mathrm{B}^{+} \rightarrow \tau^{+} v$ and approaching sensitivity to SM rates in $\mathrm{B}^{+} \rightarrow \mu^{+} v$ and $\mathrm{B}^{+} \rightarrow l^{+} v \gamma$
- Observation of CKM-suppressed $b \rightarrow d$ FCNC modes $(B \rightarrow(\rho / \omega) \gamma)$ and precise determination of CKM-favoured $b \rightarrow s \gamma$
- First determinations of kinematic observables (q^{2} spectrum and $\left.\mathrm{A}_{\mathrm{FB}}\right)$ in $\mathrm{B} \rightarrow \mathrm{K}^{(*)} l^{+} l^{-}$
Anticipate more than a factor of two data before the end of nominal PEP-II and KEKB programs around 2008

