

Review of $sin2\phi_1$ and TCPV in b \rightarrow s Penguins

Osamu Tajima (KEK, IPNS)

2005 ASPEN Winter Conference, Feb 18

Outline

Introduction

Principle of TCPV measurement

Precise measurement of $sin2\phi_1$

TCPV in b \rightarrow ccs ($B^0 \rightarrow J/\Psi K^0$ etc.)

- TCPV in b \rightarrow s penguins (Search for New Phys.)
 - $b \rightarrow sq\bar{q}$

Deviation from $sin2\phi_1 \rightarrow New Physics$

 $b \rightarrow s\gamma$

Large TCPV -> New Physics

Future Prospects

Kobayashi-Maskawa Phase

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho(-\eta)) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho(\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
$$\lambda \sim 0.22$$
$$CP \text{ violation is due to a complex phase} \text{ in quark mixing matrix}$$
$$\lambda \sim 0.22$$
$$CP \text{ violation parameters} \\ (\rho, \eta) \\ V_{ud} & V_{ub} & \Phi_2 & V_{td} & V_{tb} \\ \phi_3 & \phi_1 & CP \text{ violation parameters} \\ (\phi_1, \phi_2, \phi_3) = (\beta, \alpha, \gamma) \end{pmatrix}$$

 $(0,0) V_{cd} V_{cb}^{*} (1,0)$

Observables for TCPV

CP Violation manifests itself in proper-time difference (Δt) distributions of two B meson decays.

 $\frac{|\lambda_{CP}|^2 - 1}{|\lambda_{CP}|^2 + 1}$

$$\begin{split} \mathsf{A}_{\mathsf{CP}} &= \frac{\Gamma\left(\overline{B_d^0}(\Delta t) \to f_{CP}\right) - \Gamma\left(B_d^0(\Delta t) \to f_{CP}\right)}{\Gamma\left(\overline{B_d^0}(\Delta t) \to f_{CP}\right) + \Gamma\left(B_d^0(\Delta t) \to f_{CP}\right)} & \mathbf{S} = \frac{2Im\lambda_{\mathsf{CP}}}{1 + |\lambda_{\mathsf{CP}}|^2} \\ &= \mathbf{S}\,\sin(\Delta m\Delta t) + \mathbf{A}\,\cos(\Delta m\Delta t) \\ &\text{Mixing induced CPV} \quad \text{Direct CPV} & \mathbf{A} = \frac{|\lambda_{\mathsf{CP}}|^2 - 1}{|\lambda_{\mathsf{CP}}|^2 + 1} \\ &(BaBar: A = -C) \\ &\lambda_{\mathsf{CP}} = \frac{q}{p} \frac{\mathbf{A}(\overline{B}^0 \to f_{\mathsf{CP}})}{\mathbf{A}(\overline{B}^0 \to f_{\mathsf{CP}})} \end{split}$$

$sin2\phi_1$ measurement

 $\mathbf{A}_{CP} = \mathbf{S} \sin(\Delta m \Delta t) + \mathbf{A} \cos(\Delta m \Delta t)$ Mixing induced CPV Direct CPV

 $S = -\xi_{CP} \sin 2\phi_1, A = 0$ $\xi_{CP} : CP \text{ eigenvalue}$ + 1 (1) for CP over (odd)

- Br(b→cc̄s) ~ 10⁻³ → Many B-mesons are required
- Δt measurement \rightarrow B-mesons should be boosted
- \rightarrow Asymmetric B-factory Acc. is the best way

KEKB (located at Tsukuba, Japan)

~1km

3.5 GeV $e^+ \times 8.0$ GeV $e^$ $e^+e^- \rightarrow \Upsilon(4S)$ with $\beta\gamma = 0.425$ 22 mrad crossing angle

KEKB Rings

World Records (Feb 15)

Belle

detector

 \mathcal{B}

 $L_{\text{peak}} = (1.516 \times 10^{34})/\text{cm}^2/\text{sec}$ /*L dt* ~ 360 fb⁻¹ on-resonance ~ 330 fb⁻¹ ~ 1 M BB pairs/day ~ 350 M BB pairs

PEP-II (located at SLAC, USA)

History of Asymmetric B Factories

BABAR Detector

Principle of TCPV measurement

1. Fully reconstruct one B-meson which decays to CP eigenstate

B-meson Reconstruction Variables

Principle of TCPV measurement

- 1. Fully reconstruct one B-meson which decays to CP eigenstate
- 2. Tag-side determines its flavor
- 3. Proper time (Δt) is measured from decay-vertex difference (Δz)

$sin2\phi_1$ measurement results

TCPV of b → cc̄s modes (tree-diagram)

 $A_{CP}(\Delta t) = -\xi_{CP} \sin 2\phi_1 \sin(\Delta m \Delta t)$

$\sum_{\mu} \sin 2\phi_1$ Result : 152×10⁶ BB Pairs

Consistency of TCPV results with indirect constraints

TCPV in Hadronic b \rightarrow s Penguins

New Physics Search in "sin2 ϕ_1 " (= - ξ_{CP} S) measurement

BELLE

preliminary

TCPV results for $B^0 \rightarrow \omega Ks$

"sin2 ϕ_1 " from hadronic $b \rightarrow s$ penguins

World Average (WA)

 $\frac{\sin 2\phi_1(b \rightarrow sq\overline{q}) = 0.41 \pm 0.07}{\sin 2\phi_1(b \rightarrow c\overline{c}s) = 0.726 \pm 0.037}$

$$CL \sim 10^{-4} (3.8\sigma)$$

Deviation from SM expectation !?

BABAR 04 Charmonium $0.722 \pm 0.040 \pm 0.023$ Belle 04 0728+0056+0023 Average (charmonium - all exps.) 0.726 ± 0.037 BABAR 04 0.50±0.25_0.07 Ŷ Belle 04 $0.06 \pm 0.33 \pm 0.09$ BABAR 04 Ϋ́, $0.27 \pm 0.14 \pm 0.03$ Belle 04 $0.65 \pm 0.18 \pm 0.04$ BABAR 04 foks 0.95^{+0.23}_{-0.35}±0.10 Belle 04 $-0.47 \pm 0.41 \pm 0.08$ BABAR 04 ¥. 0.35^{+0.30}_{-0.35}±0.04 Belle 04 $0.30 \pm 0.59 \pm 0.11$ Belle 04 ωKs 0.75±0.64^{+0.13} BABAR 04 Ŷ $0.55 \pm 0.22 \pm 0.12$ Belle 04 0.49±0.18^{+0.17} K6K6K6 Belle 04 Average (s-penguin) FPCP 2004 0.41 ± 0.07 -0.5 1.5 0.5 0 -1 $-\eta_f \times S_f$

(BaBar's new results for $B^0 \rightarrow KsKsKs$ are not included, yet)^{1.5} (Updated $\eta'K_{S'} \phi K^0$, $K^+K^-K_S$ are not used, while its effect is small)

TCPV in Radiative b → s Penguins

New Physics Search

TCPV in radiative $b \rightarrow s$ penguins

D. Atwood, M. Gronau, A. Soni Phys. Rev. Lett. 79, 185 (1997)D. Atwood, T. Gershon, M. Hazumi, A. Soni hep-ph/0410036

$\begin{array}{ccc} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$

- Accuracy of sin2 φ₁ is ~5%
 > precise test of SM (sin2 φ₁ = +0.726 ± 0.037)
- TCPV in hadronic b → s penguins
 3.8σ away from SM expectation with all results combined ("sin2φ₁" = +0.41 ± 0.07)
- TCPV in radiative $b \rightarrow s$ penguins
 - Reference point of SM is S~A~0
 - > $B^0 \rightarrow Ks\pi^0\gamma$ (incl. $K^*\gamma$) consistent with SM (~1 σ)

Improved impressive results will come as data increases

Hadronic b→s TCPV

Deviation of "sin2 ϕ_1 " can be tested with 5 σ accuracy using few years of data

$\oint Summary of sin2\phi_1 \& b \rightarrow s TCPV \oint$

- Accuracy of sin2 φ₁ is ~5%
 > precise test of SM (sin2 φ₁ = +0.726 ± 0.037)
- TCPV in hadronic b → s penguins
 > 3.8σ away from SM expectation with all results combined ("sin2φ₁" = +0.41 ± 0.07)
- TCPV in radiative b → s penguins
 > Reference point of SM is S~A~0

 \succ B⁰ → Ksπ⁰γ (incl. K^{*}γ) consistent with SM (~1σ)

Future Prospects

Very impressive results will come with Super-B factory

Backup slides

Theoretical uncertainties of "sin2 ϕ_1 "

sin2 $\phi_1(J/\Psi K_s)$ -"sin2 $\phi_1(\phi K_s, \eta' K_s)$ " = 0.33 +- 0.11 (w/ theor. errors) 3.1σ (SM)

Zoltan Ligeti(LBL) in ICHEP04

Impacts for SUSY models

Physics Reach at Super-KEKB

Physics at Super B Factory (hep-ex/0406071)

SVD Upgrade (Oct. 2003)

Better I.P. resolutions Higher efficiency for Ks vertexing

 $R_{bp} = 2 \text{ cm} \rightarrow 1.5 \text{ cm}$

resolution in z (mt)140 120 \mathcal{B} SVD2 Cosmic 26.3⊕32.9/p μm SVD1 Cosmic 42.2⊕44.3/p μm 100 80 60 40 20 ~ 40 µm @ 1GeV/c 0 2 pseudo momentum (GeV/c) **152M BB pairs with SVD1** + 122M BB pairs with SVD2

impact parameter

 $B^0 \rightarrow J/\psi K^0$: 274×10⁶ BB Pairs BELLE

Mode	СР	N_{sig} ($N_{ev} \times pur$)	Purity [%]
$\int \psi K_{S}(\pi^{+}\pi^{-}, 2\pi^{0})$	_1	4150.	96.2
<i>J</i> / <i>ψ</i> K _L	+1	2722.	63.1
Total		6872.	

6872 signal events are used in the CP asymmetry fit.

$$J/\psi K^0$$
 only preliminary

$$sin2\phi_1 = 0.666 \pm 0.046$$

A = 0.023 ± 0.031

Before upgrade $(152 \times 10^6 B\overline{B})$

 $\begin{array}{l} \text{sin2} \varphi_1 = 0.696 \pm 0.061 \\ \text{A} = 0.011 \pm 0.043 \end{array}$

After upgrade $(122 \times 10^6 B\overline{B})$

 $\begin{array}{l} \text{sin2}\varphi_1 = 0.629 \pm 0.069 \\ \text{A} = 0.035 \pm 0.044 \end{array}$

Continuum Background Suppression

Vertex reconstruction w/ K_S trajectory

Tagging and Δt resolution parameters

 $B \rightarrow D^{(*)} \pi^+, \rho^+, a_1^+ \text{ and } J/\Psi K^{*0} \dots$

CP asymmetry parameter extraction

Multi-dimensional unbinned maximum likelihood fit

Minimize $-2\sum_{i} \ln L_{i}$

Likelihood for the *i*-th event

$$L_{i} = (1 - f_{ol}) \Big[f_{sig} \cdot P_{sig} \otimes R_{sig} + (1 - f_{sig}) \cdot P_{bkg} \otimes R_{bkg} \Big] + f_{ol} \cdot P_{ol}$$

$$P_{sig} (\Delta t; S, A, q, w, \Delta w) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \Big[1 - q \cdot \Delta w + q (1 - 2w) \{ S \sin(\Delta m \Delta t) + A \cos(\Delta m \Delta t) \} \Big]$$
Free parameters

Raw asymmetry plot is just a projection onto Δt axis. Fitting is not in 1-dimension (Δt)

SVD1/2 Data Checks

combined fit

 $\phi K_S/K_I$ Results

 ϕK_{S} only

 $\phi K_{\rm L}$ only

$$S = 0.00 \pm 0.33$$

 $A = 0.06 \pm 0.22$

$$S = 0.29 \pm 0.31$$

 $A = 0.07 \pm 0.27$

$B^0 \rightarrow \phi K$: Validations

Control sample

Lifetime fit w/ $B \rightarrow \phi K^{\pm} / K_{S}$

Asymmetry fit w/ ϕK^{\pm}

CP component in $B \rightarrow K^+K^-K^0_S$ decay

Available decay modes ($P^0 = Q^0$ only)

					P^0			
X^0	π^0	η	η'	f_0	a_0	K_S^0	K_L^0	D _{CP}
π^0	$\underline{\pi^0\pi^0\pi^0}$	$\eta\eta\pi^0$	$\eta'\eta'\pi^0$	$f_0 f_0 \pi^0$	$a_0a_0\pi^0$	$K^0_S K^0_S \pi^0$	$K^0_L K^0_L \pi^0$	$D_{CP}D_{CP}\pi^0$
η	$\pi^0\pi^0\eta$	ηηη	$\eta'\eta'\eta$	$f_0 f_0 \eta$	$a_0a_0\eta$	$\overline{K^0_S K^0_S \eta}$	$K^0_L K^0_L \eta$	$D_{CP}D_{CP}\eta$
η'	$\pi^0\pi^0\eta'$	$\eta\eta\eta'$	$\eta'\eta'\eta'$	$f_0 f_0 \eta'$	$a_0a_0\eta'$	$K^0_S K^0_S \eta'$	$K^0_L K^0_L \eta'$	$D_{CP}D_{CP}\eta'$
f_0	$\pi^0\pi^0f_0$	$\eta\eta f_0$	$\eta'\eta'f_0$	<i>f</i> o <i>f</i> o <i>f</i> o	$a_0a_0f_0$	$K^0_S K^0_S f_0$	$K^0_L K^0_L f_0$	$D_{CP}D_{CP}f_0$
a_0	$\pi^0\pi^0a_0$	$\eta\eta a_0$	$\eta'\eta' a_0$	$f_0 f_0 a_0$	$a_0a_0a_0$	$K^0_S K^0_S a_0$	$K^0_L K^0_L a_0$	$D_{CP}D_{CP}a_0$
$\mid K_S^0$	$\pi^0\pi^0K_S^0$	$\eta\eta K_S^0$	$\eta'\eta'K_S^0$	$f_0f_0K_S^0$	$a_0a_0K_S^0$	$K^0_S K^0_S K^0_S$	$K^0_L K^0_L K^0_S$	$D_{CP}D_{CP}K_S^0$
K_L^0	$\overline{\pi^0\pi^0K^0_L}$	$\overline{\eta\eta K_L^0}$	$\overline{\eta'\eta'K^0_L}$	$f_0 f_0 K_L^0$	$a_0a_0K_L^0$	$\overline{K^0_S K^0_S K^0_L}$	$K^0_L K^0_L K^0_L$	$D_{CP}D_{CP}K_L^0$
	$\pi^0\pi^0 D_{CP}$	$\eta\eta D_{CP}$	$\eta'\eta' D_{CP}$	$f_0 f_0 D_{CP}$	$a_0a_0D_{CP}$	$\overline{K^0_S K^0_S D_{CP}}$	$K^0_L K^0_L D_{CP}$	
η_c	$\pi^0\pi^0\eta_c$	$\eta\eta\eta_c$	$\eta'\eta'\eta_c$	$f_0 f_0 \eta_c$	$a_0a_0\eta_c$	$\overline{K^0_S K^0_S \eta_c}$	$K^0_L K^0_L \eta_c$	
Xc0	$\pi^0\pi^0\chi_{c0}$	$\eta\eta\chi_{c0}$	$\eta^\prime\eta^\prime\chi_{c0}$	$f_0 f_0 \chi_{c0}$	$a_0a_0\chi_{c0}$	$K^0_S K^0_S \chi_{c0}$	$K^0_L K^0_L \chi_{c0}$	

Table 1: Possible $B^0 \to P^0 P^0 X^0$ final states. Underlined modes are discussed in detail in the text. The doubly underlined mode $B^0 \to K_S^0 K_S^0 K_S^0$ has already been observed.

Systematic errors on S

BELLE	Ks π^0	Κ* γ	ω Ks	η' Ks	f ₀ Ks	φ K ⁰	K+K-Ks
VTX	0.02	0.06	0.01	0.01	0.02	0.01	0.01
flavor tag	0.01	0.02	0.04	0.01	0.01	0.01	<0.01
resolution	0.05	0.05	0.07	0.03	0.03	0.04	0.03
fit bias	0.03	0.03	+0.01 -0.10	0.01	0.03	0.01	0.01
signal fraction	0.07	0.02	0.10	0.02	0.05	+0.08 -0.06	0.02
physics parameters	0.02	0.01	0.01	<0.01	0.01	<0.01	<0.01
backgroun d ∆t shape	0.04	0.03	0.02	<0.01	0.04	0.01	<0.01
tag side interferenc e	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
TOTAL	0.11	0.10	+0.13 -0.16	0.04	0.08	0.09	0.04

KKKS: effective sin2 $\phi_1 \rightarrow 0.17$ for CP-even fraction

B⁰→KsKsKs peaking background rejection m_{13}^2 $6\pi^{\pm}$ 14 $B^0 \rightarrow \chi_{c0} Ks \rightarrow KsKsKs$ 10 b→ccs **VETOed** 8 $B^0 \rightarrow D^0_{CP} Ks \rightarrow KsKsKs$ 6 4 $B^0 \rightarrow f_0(980)$ Ks \rightarrow KsKsKs b→s 🔨 Dalitz plot 2 kept С 10 12 ,14 0 2 6 8 $(P^{*}(Ks_{1}) < P^{*}(Ks_{2}) < P^{*}(Ks_{3}))$ m₁₂

$B^0 \rightarrow KsKsKs$ vertex reconstruction

	vertex eff.	vertex eff.
	(SVD1)	(SVD2)
3(π+π–) [3 tight]	77%	86%
3(π+π–)	83%	87%
[2 tight,1 loose]		
2(π+π-) 1(π0π0)	62%	74%

$B^0 \rightarrow KsKsKs$ systematic error

	S	${\mathcal A}$
Signal fraction	0.103	0.033
Possible fit bias	0.030	0.018
Vertexing	0.021	0.047
Background ∆ <i>t</i> shape	0.078	0.011
Δt resolution function	0.119	0.041
Tag-side interference	0.019	0017
Flavor tagging	0.040	800.0
Physics parameters	0.006	0.005
Total	0.18	0.08

$f_0(980)K_S:\pi^+\pi^-$ Mass didtribution

Non- f_0 components are determined from the M($\pi^+\pi^-$) distribution

• $f(f_0 K_S) = 91\%$ • $f(\pi^+ \pi^- K_S) = 2.3\%$ • $f(\rho^0 K_S) = 4.8\%$ • $f(f_x K_S) = 1.6\%$