

Recent Observations with the H.E.S.S. Experiment

Conor Masterson MPI für Kernphysik, Heidelberg

γ -rays in Astrophysics

Highest energy astrophysical observations

- Long lever arm for multiwavelength studies
- Uncharted territory for top down processes
- New energy range always brings new discoveries

Conor Mascerson

The Cherenkov technique

- γ ray interacts in atmosphere
- Cascade of charged particles produced
- Cherenkov light propagates to ground
- Large optical detectors on ground
- Record images of air shower
- Reconstruct primary particle energy, direction
- Reject background showers

February 2005

International collaboration

- Germany, France, UK, others
- 4 telescope array
 - Namibia, SW Africa
 - 13m diameter dish
 - Composite mirror
 - 960 PMT camera
- Largest Air-Cherenkov instrument
 - High sensitivity
 - Wide energy range
 - Precise energy resolution
 - Precise angular resolution
- Large field of view

H.E.S.S. Sensitivity

• HEGRA

- 5% of Crab flux in 100 hours
- H.E.S.S.
 - 5% of Crab in 1 hour
 - 0.5% in 100 hours

H.E.S.S. For Extended objects

Large extended sources

- Supernova shells
- Galactic clusters
- Unidentified Sources
 - Surveys
 - Egret unidentifieds
 - Other VHE unidentifieds

Point spread function

Egret Conor Masterson

H.E.S.S.

Aspen winter meeting

February 2005

Current Status

All four telescopes operational since February 2004

Science with H.E.S.S.

- The source of Cosmic Rays
 - Remnants of exploded massive stars?
 - γ-rays messengers of cosmic ray production

Direct evidence of dark matter

- Collections of massive particles in gravitational wells
- Look for line features, cutoffs in spectra

Phenomenology of energetic objects

- AGN Huge jets from centres of Galaxies
- Pulsars pulsed emission from neutron stars
- Plerions non-thermal clouds surrounding pulsars
- γ-ray bursts rapid transient bursts from massive stars?

The Mystery of Cosmic Rays

- Discovered in 1913
 - Victor Hess
- High Energy radiation from space
 - Flux increased with altitude

- Difficult to trace origin
 - Cosmic rays do not travel in straight lines!
 - Complex galactic magnetic fields
- γ-rays can help
 - Also produced at sites of acceleration
 - Give direct indication of conditions at source

The Cosmic ray spectrum

Charged Particles

 ∇

- Accelerated to very high energies
- Nuclei, mostly protons
- Power law spectrum
 - Non thermal
 - Extends over huge energy range
- Partly Galactic Origin
 - Particles up to Knee
 - Mostly follow stellar composition
- Partly Extra-Galactic?
 - Mostly higher energies
 - Source must be further away

Supernova remnants

Death of a massive star

- End of life
 - Runs out of fuel
- Core collapses
 - Massive explosion

Expanding shock wave

- Kinetic energy dispersed
- May accelerate surrounding matter
 - Cosmic rays
- Enough energy to explain flux

RXJ 1713-39

- ASCA X-ray image
- Dense molecular cloud regions

 \bigtriangledown

 \bigtriangledown

 \Box / \Box

- Correspond to X-ray hotspots
- Interaction with cloud?
 - Target protons accelerated?
 - Expect to see γ-rays
- Detected in VHE by CANGAROO
 - 2000

RX J1713 with H.E.S.S.

Strong detection in 2003 Two telescopes 18 hours observations

Confirmed in 2004 Full array

RX J1713 Spectrum

• H.E.S.S.

Ø S

 ∇ / ∇

 \Box

- Hard flat spectrum
- Consistent with cosmic ray acceleration
- Previous measurements
 - Not inconsistent

Precise measurements

- Good Correlation with X-ray image
 - Extended shell structure
 - Limb brightened, close to dense regions
- More detailed studies
 - Shape
 - Spectral variations

Vela Junior (RX J0852)

2nd extended SNR shell detected by H.E.S.S.

- Hard, flat spectrum
- High flux
 - ~ 1 Crab
- Largest VHE source
 - ~1° across

Strong correlation with X-ray

Shell structure seen

Is this the source of cosmic rays?

- Multiple Shell-type SNRs
 - Similar morphology, spectra
- First clear proof of particle acceleration in SNR shockwave
 - Protons or electrons?
- Strong correlation with Molecular clouds
 - Implies cosmic ray proton acceleration
- Also strong correlation with X-ray
 - Possibly caused by electrons?
- Question probably still open

Top down Physics

- Look for γ-rays from annihilation of exotic particles
 - Neutralinos, axions, supersymmetric particles?
 - Evaporating black holes
 - Topological defects

Searching for Dark Matter

- Particles collect in gravity wells
 - centre of Galaxy
 - Star clusters
 - Galactic clusters
- Annihilate to emit γ radiation
- Would be direct evidence of new physics
- Flux strongly model dependant
 - Difficult to set useful upper limits

The Galactic Centre

Very dense region Lots of possible sources VHE emission claimed by CANGAROO, Whipple Not clear source **P**dssibilities Sagittarius A* - supermassive black hole Several SNR, including Sag-A East, Cosmic ray acceleration? Dark matter annihilation?

Aspen winter meeting

Ó

February 2005

H.E.S.S. Observations

• H.E.S.S. 2004

- Strong detection
- Point source
- Good source localisation
- Hard, flat energy spectrum

Position compatible with Sgr A*

Galactic center energy spectrum

Well measured

 $\overline{\mathbf{v}}$

Ø S

 ∇ / ∇

V

 \bigtriangledown

- Hard spectrum
- Extends to high energy

Other measurements?

 Agreement not very good

The Galactic Centre - conclusion

Strong Detection

s s

- Confirm previous detection
- Precise measurements
- Source not clear
 - SNR or black hole?
- Dark matter?
 - Spectrum is flat, featureless
 - Limits possible particle mass $m\chi > 12 \text{ TeV}$
 - Not ruled out, but not likely
 - Many other candidates to explain γ-rays
- To resolve the ambiguity we need:
 - More statistics, precise spectrum, well determined position

Astrophysical sources

- **Pulsars and Plerions**
 - **Classical VHE source Crab**
- **Active Galactic Nuclei**
 - Jets from centres of Galaxies
 - Strongest VHE sources
- **Galactic Clusters** Ó
- Micro quasars
- X-ray binaries
- γ-ray bursts

Conor Masterson

- Difficult to catch
- Probably not visible

Pulsar wind Nebulae

- Pulsar at centre of Supernova remnant
 - Wind of hgh energy electrons/positrons from pulsar
 - Interact to produce Very High Energy γ-rays
- Main example Crab Nebula
 - Supernova recorded in 1054 AD
 - Close young SNR
 - Brightest optical/radio pulsar
 - Seen strongly by H.E.S.S.

- Plerion close to Galactic centre
 - Serendipitous discovery
- Weakest known VHE source
- 2% Crab flux

Aspen winter meeting

February 2005

Conor Masterson

Aspen winter meeting

February 2005

Plerion

 \bigtriangledown

 \Box / \Box

 \bigtriangledown

 \Box

- X-ray nebula
- Extended features
 - Jets?
 - Outflow regions?
- Strong detection in VHE
 - Flux 15% Crab
 - Clearly extended
 - Coincident with Jets
 - First ever resolved VHE plerion

PSR B1259-63

Pulsar orbiting Massive Star

• Unique in our Galaxy!

Complex stellar dance

 Pulsar passes through Stellar outflow disk every 4 years

Observed at Periastron

- Feb March 2004
- Peak in emission expected

Strong detection

- ~5% Crab Flux
- Soft energy spectrum
- Point source
 - Detected again in April/May

> <

Flux variability

- First variable source of TeV γ-rays in our Galaxy
 - Interesting to compare with X-ray light curve
 - Interesting comparison with theoretical models
- More data needed!

Unidentified TeV source

- Steady flux
- energy spectrum differs
- Seems to be extended
- 10% Crab flux

AGN with H.E.S.S.

- Active Galactic Nuclei
 - Huge jets of radiation streaming from centres of Galaxies
- Black hole at centre?
 - Matter falling in, accelerated, form massive bipolar jets
- Some AGN pointed straight at us
 - "Blazars"
 - Highly variable huge flares
 - Emission process unclear
 - Cosmic ray protons?

2 2 4 2 2 2 2 8 2 2 2 2 8 2 2 2 2 8 2 2

Infrared absorption

AGN γ-rays absorbed

- Interact with starlight, dust
- Probe for conditions very far away in Universe
- Compare AGN at different distances
- Distant AGN seen by H.E.S.S.

Example - PKS 2155

First H.E.S.S. Source

- Detected in 2002
- Distant AGN
 - Low flux, soft spectrum
- Some variability
 - Multiwavelength studies

- Surveying the Galactic Plane
 - Selected region around Galactic centre
 - Scan entire region with overlapping field of view
 - Look for unknown sources of γ-rays
- Results out real soon now!

Galactic Centre

1st H.E.S.S. Galactic survey region Aspen winter meeting

Conor Masterson

February 2005

Conclusions

Achieved design sensitivity with full array

Techniques

- Precise spectral measurements of sources at low fluxes
- Precise positioning
- Survey capability
- Interesting LZA observations
- Lots of interesting sources already
 - First three extended TeV sources
 - First variable Galactic source
 - Unidentified TeV source

Trends

- Hard spectrum emission from sources in Galactic Plane
- Extended sources

Cherenkov images in Camera

Large background rate of hadronic cosmic rays

Conor Masterson

Aspen winter meeting

February 2005

Geometrical Reconstruction

