

Neutrino Physics with Double Beta Decay Carter Hall, SLAC

Aspen Winter 2005

What we can learn from double beta decay: Are neutrinos their own antiparticles (Dirac or Majorana)?

Majorana fermion: particle = antiparticle Dirac fermion: particle and antiparticle are distinct

without caveats:

Majorana neutrinos $\leftrightarrow \beta\beta0\nu$

- Neutrinos must be massive (no longer a caveat).
- The neutrino mass mechanism for $\beta\beta0\nu$ is forbidden if neutrinos carry lepton number (Dirac case).
- Many types of new physics can lead to $\beta\beta0\nu$ (SUSY, leptoquarks, W_R, ect.), but these possibilities always imply Majorana neutrinos.
- $\beta\beta0\nu$ is our only realistic experimental window on the Majorana/Dirac question.

"neutrino mass mechanism" for $\beta\beta0\nu$

What we can learn from double beta decay: Are neutrinos their own antiparticles (Dirac or Majorana)?

The Majorana/Dirac nature of the neutrino is determined by the mass term in the Lagrangian.

- Neutrinos are clearly an exception to the fermion mass pattern, so the Higgs cannot be the whole story.

- In many new physics models the neutrino masses are tied to the GUT scale (see-saw mechanism).

Most models make a clear prediction
for Majorana or Dirac neutrinos, so
ββ0ν will constrain GUT scale physics.

Standard model fermion mass spectrum

What we can learn from double beta decay: What are the masses and mass hierarchy of the neutrinos?

The $\beta\beta0\nu$ decay rate depends on the absolute neutrino masses:

Two caveats: 1) we must have a reliable calculation of the nuclear matrix element 2) the neutrino mass mechanism must dominate the decay

To resolve ambiguities in $\langle m_v \rangle$ we also need a positive result from beta spectrum endpoint measurements (KATRIN), and precise measurements of |Uei| from oscillation experiments.

Desirable properties for a $\beta\beta0\nu$ candidate isotope: Large Q value and natural abundance

High Q value puts $\beta\beta0\nu$ above radioactive backgrounds, and high abundance makes the experiment cheaper.

- ⁴⁸Ca: fantastic Q, but only 0.2% natural abundance

- ¹³⁰Te: moderate Q, but no enrichment needed

- ⁷⁶Ge: low Q, moderate abundance, yet currently has the best sensitivity

- ¹³⁶Xe: moderate abundance, but enrichment is relatively cheap (noble gas)

Desirable properties for a ββ0ν candidate isotope: Good energy resolution

The $\beta\beta0\nu$ signature is a line at the Q value – so energy resolution is critical.

Current status of $\beta\beta0\nu$ searches

 $\beta\beta0\nu$ has not been observed(!)

Four isotopes have $\langle m_v \rangle$ sensitivity from 0.3 to 3.0 eV.

Best sensitivity is currently from 76Ge (Heidelberg-Moscow and IGEX), but 130Te is rapidly closing the gap (CUORICINO).

Tritium beta endpoint searches give $m(v_e) < 2.2 \text{ eV}$ (Mainz and Troitsk).

WMAP data give $\Sigma mv < 0.75$ eV (model dependent).

Germanium Basics

Detectors are solid state diodes typically 2-3 kg enriched to ~80% in 76Ge.

Fantastic energy resolution (4 keV FWHM) due to low ionization potential (2.9 eV) and good Fano factor (0.05).

Operated at LN temperature to suppress thermal noise.

An IGEX Ge diode in its copper cryostat

Four crystals with LN service and Pb shield

Pulse shape analysis rejects multiple site events within a single crystal.

Suffers from low Q value (2039 keV) and cosmogenics in the germanium (68Ge, 60Co) and copper cryostats.

Aspen Winter 2005

Next generation 76Ge experiments

Majorana is a successor to IGEX, whose dominant backgrounds were cosmogenics in the germanium.

A Gran Sasso proposal calls for the elimination of 238U and 232Th in the cryostats by operating the diodes directly in LN or LAr, away from the copper.

Gran Sasso 76Ge experiment

)

Tellurium basics: low temperature bolometers

Diamagnetic and dielectric crystals have tiny heat capacities at low temperature. Cool them down to 10 mK, and you can see energy deposition with a thermometer .

This technique is applicable to many isotopes – currently 130Te is used to take advantage of its high isotopic abundance (30%).

Outstanding energy resolution is possible (1 keV). Drawbacks: no information beyond energy, like particle ID (alpha vs beta), event location, or event topology.

Aspen Winter 2005

130Te : CUORICINO Italy, US, Netherlands, Spain

A.	(~	(~0.1 sec)		
				Ch1 Mean 11.7mV
				Ch1 Pk−Pk 28.0mV
				and the second

Aspen Winter 2005

CUORICINO - is a 40.7 kg tower of TeO2 crystals in operation at Gran Sasso.

TeO2 tower under construction

130Te: CUORICINO and CUORE

CUORICINO: exposure to date = 10.85 kg yr (~20% of Heidelberg-Moscow) Live time ~ 75%, so exposure should surpass H-M soon.

Current result: $\langle m_v \rangle < 0.2 - 1.1 \text{ eV}$

CUORE will consist of multiple CUORICINO-type towers.

Total mass = 741 kg (34% 130Te)

Neutrino mass sensitivity $\sim 30 \text{ meV}$

Aspen Winter 2005

100Mo and 82Se: NEMO-3

France, Russia, Japan, US, Czech Republic, currently taking data in Frejus, France.

NEMO is designed to investigate the $\beta\beta0\nu$ mechanism: multiple isotopes and electron angular distribution.

Passive isotope on thin foils surrounded by Geiger mode drift cells for electron tracking and plastic scintillator for energy measurement.

25 Gauss magnetic field measures β charge.

Tracking provides powerful background rejection, but thin foil sources are more difficult to scale up. (NEMO-3 has 10 kg of isotope). Moderate energy resolution: FWHM = 150 keV for 1 MeV electrons.

100Mo and 82Se: NEMO-3

6.9 kg of 100Mo and 0.93 kg of 82Se for $\beta\beta$ 0v search.

Other isotopes for $\beta\beta2\nu$ measurements and background studies.

100Mo and 82Se: NEMO-3

Energy spectrum and angular distribution agrees beautifully with $\beta\beta 2\nu$ expectation for 100Mo.

NEMO-3 is the world's most sensitive 100Mo experiment, and has also measured $\beta\beta 2\nu$ half lives for 82Se, 116Cd, and 150Nd

100Mo $\beta\beta2\nu$ angular distribution

100Mo $\beta\beta2\nu$ energy spectrum

The NEMO collaboration has proposed a 100 kg experiment called Super-NEMO, with neutrino mass sensitivity of 30 meV.

Aspen Winter 2005

136Xe: Enriched Xenon Observatory (EXO)

200 kg of isotope: 80% 136Xe

EXO is constructing a 200 kg liquid Xe TPC to be located underground at WIPP in Carlsbad, NM.

Experiment will be assembled and commissioned inside the clean rooms at Stanford, then the clean rooms will move to WIPP for physics data taking.

US, Canada, Switzerland, Italy, Russia

Noble gas - easy to enrich and purify. Monolithic detector – minimal surface area. Good rejection for Compton scatters, alpha decay. No long lived isotopes to activate. Drawbacks: moderate energy resolution, new technology.

EXO clean rooms at Stanford

136Xe: EXO 200 kg prototype

EXO R&D has shown that xenon energy resolution can be improved from 120 keV to 80 keV FWHM using the anticorrelation of scintillation and ionization, with further improvement expected.

Re-purification of xenon works well – purity recovers completely within one week from an intentional poisoning with 10 ccs of air.

Cryostat fabrication begins next month (France). Design of lead shielding, electronics, and TPC electrostatics is in advanced stages.

136Xe: EXO 200 kg prototype

LXe TPC to be contained in low background vessel, surrounded by 50 cm of ultra-pure cryofluid inside a copper cryostat and shielded by 25 cm of lead.

136Xe: Ton-scale EXO with barium tagging

EXO intends to build a ton-scale background free $\beta\beta0\nu$ experiment by tagging the final state barium ion event-by-event.

Barium unique atomic spectroscopy makes it possible to "see" a barium ion with the naked eye.

blue and red lasers needed for the spectroscopy

A photo of a single Ba+ ion in vacuum

lon signal in 2 x 10⁻⁵ torr xenon gas

Ba+ ion resonance in a Xe buffer gas

136Xe: Ton-scale EXO with barium tagging

The biggest remaining hurdle to barium tagging is the delivery of the Ba+ ion from liquid Xe to the spectroscopy trap.

Our prototype electrostatic probe has shown that the we can 'grab' ions in liquid xenon. Must now demonstrate efficient ion release and trap loading.

Status of double beta decay

Collaborations around the world are forming to build ambitious experiments with a wide variety of techniques.

Degenerate hierarchy (100 - 300 meV): 3 to 5 years with 100 kg scale experiments

Inverted heirarchy ($\sim 50 \text{ meV}$): 5 to 10 years with one ton experiments

Normal heirarchy ($\sim 5 \text{ meV}$): 10+ years with ten ton experiments.

Future looks bright for double beta decay.

The neutrino physics of double beta decay (in red):

- 1. What are the masses of the neutrinos?
- 2. What is the pattern of mixing among the different types of neutrinos?
- 3. Are neutrinos their own antiparticles?
- 4. Do neutrinos violate the symmetry CP?
- 5. Are there sterile neutrinos?
- 6. Do neutrinos have exotic properties (dipole moments, neutrino decay, ect.)?
- 7. What do neutrinos have to tell us about the intriguing proposals for new models of fundamental physics?
- 8. What is the role of neutrinos in shaping the universe?
- 9. Are neutrinos the key to the understanding of the matter-antimatter asymmetry of the universe?
- 10. What can neutrinos disclose about the deep interior of astrophysical objects and the mysterious sources of very high energy cosmic rays?

Recommendation #1: "We recommend, as a high priority, a phased program of sensitive searches for neutrinoless nuclear double beta decay."

*APS Multidivisional Neutrino Study, November 2004

Aspen Winter 2005

What we can learn from double beta decay: (1) Are neutrinos their own antiparticles (Dirac or Majorana)?

We must search for $\beta\beta0\nu$ even if neutrinos are Dirac:

Observation of $\beta\beta0\nu$ = Majorana neutrinos

Observation of neutrino mass kinematically + non-observation of $\beta\beta0\nu$ = Dirac neutrinos

The KATRIN experiment is a next generation (2008) beta endpoint spectrometer, and is expected to be sensitive to neutrino masses > 0.2 eV.

What we can learn from double beta decay: (2) What are the masses and mass hierarchy of the neutrinos?

ββ0v matrix element calculations are known for having large errors (~300%), but we have reason to be optimistic.

Rodin, et. al. *:

- fix the strength of the particleparticle interaction to reproduce the observed $\beta\beta 2\nu$ decay rates

- then the $\beta\beta0\nu$ matrix element depends weakly on the number of the single particle states used, and weakly on the calculation method (QRPA or RQRPA).

*PRC 68 044302 (2003)

Such a prescription can only be confirmed by observing $\beta\beta0\nu$ in multiple isotopes.

Desirable properties for a $\beta\beta0\nu$ candidate isotope: Large matrix element and phase space

Decay rate = phase space \times |nuclear matrix element|² \times |effective neutrino mass|²

Note that different matrix element calculations can alter this picture.

Aspen Winter 2005

Next generation 76Ge experiments: Heidelberg-Moscow successor at Gran Sasso

Italy, Russia, Germany

H-M backgrounds were mostly 238U and 232Th in the copper cryostats. A European collaboration proposes to reduce them by operating the crystals directly in LN or LAr, which can be high purified of radioactivity.

The Gran Sasso and Majorana collaborations will likely merge to build a single global 500 kg germanium experiment.

Next generation 76Ge experiments: Majorana

US, Russia, Japan

Majorana is a successor to IGEX, whose dominant backgrounds were cosmogenics in the germanium.

Majorana aims to suppress cosmogenics through crystal segmentation and underground diode production.

210 crystals, 500 kg total

Pb shield

LN dewar

21 Ge diodes, 2.35 kg each

Segmentation (6x2) results in 2500 individual 200g segments ⁷

Aspen Winter 2005