Review of rare *B* decay results from *BABAR* and Belle

Fred Blanc University of Colorado

for the BABAR Collaboration

Aspen Winter Conference on Particle Physics Aspen (CO), Feb.13-19, 2005

Overview

- Introduction
- The BABAR and Belle experiments
- Charmless hadronic *B* decays:
 - branching fractions
 - charge asymmetries
- Radiative *B* decays
- B charmless decays to pairs of vector mesons
- Summary & conclusion

Brief historical perspective

• 1990's:

CLEO (and ARGUS) started to explore rare *B* decays:

- observation of $b \rightarrow u$ transitions (semileptonic)

- $b \rightarrow s\gamma$

- $B \rightarrow \eta' K$ larger than first expected (~70x10⁻⁶)
- **1999:** *BABAR* and Belle start data taking
 - high luminosity B factories
 - in ~5 years, accumulated a combined sample of >500M $B\overline{B}$
 - ideal for the study of rare decays

What do we call rare *B* decays?

- *B* decays suppressed relative to $b \rightarrow c$ transitions:
 - they occur mostly via $b \rightarrow u$ (tree) or $b \rightarrow s(d)$ (penguin loop) transitions => BF <10⁻⁴
 - competing tree and penguin amplitudes
- Examples of possible diagrams:

Why are rare B decays interesting?

1) Tests of the standard model (SM)

- > small amplitude processes
- sensitivity to CP violation (phases in mixing and decay)
- constraints on CKM parameters: <u>sides & angles</u>

2) Sensitivity to physics beyond the SM

- > heavy (non-SM) particles can enter the loop
- > put constraints on theoretical models (e.g. SUSY)

PEP-II and KEK-B

- Asymmetric B factories
- Run at $\Upsilon(4S)$ CM energy (10.58GeV)
- Peak luminosities: PEP-II: 9.2x10³³cm⁻²s⁻¹

KEK-B: 14.2x10³³cm⁻²s⁻¹

BABAR and Belle detectors

Analysis techniques (I)

- Experimental challenge: isolate tiny signal in very large background (100s M events)
- Variables used to identify the signal:
 - *B* kinematics (exploit the known total energy of the *B* candidate)

B mass: **Energy:** $\Delta E = E_B^* - rac{1}{2}\sqrt{s}$ $m_{ES} = \sqrt{rac{1}{4}s - |\mathbf{p}_B|^2}$ CM energy *B* candidate energy $m_{\rm FS}(BABAR) = m_{\rm bc}(Belle)$ Arbitrary scale ΔE *m*_{ES} $m_{_{\rm ES}}$ resolution ΔE resolution ≈20-50MeV $\approx 2-3 MeV/c^2$ 5.22 5.24 5.26 5.28 -**0**.1 0 0.1 5.2 m_{ES} [GeV] ∆E [GeV] secondary resonance mass(es), etc...

Analysis techniques (II)

- Backgrounds:
 - combinatoric $e^+e^- \rightarrow q\overline{q} (q=u,d,s,c)$ (dominant background)

→ event shape variables

- other B decays
- Signal extracted with ML fit on discriminating variables

Branching fractions (BF)

- ~50 charmless hardonic B decays have been observed
- Useful to test and help develop phenomenological models
- Examples:
 - flavor SU(3) e.g. Chiang etal. PRD68,074012 PRD69, 034001
 - QCD factorization e.g. Beneke&Neubert Nucl.Phys. B675,333

http://www.slac.stanford.edu/xorg/hfag/

100 (a)

(b) 100

-0.5

-10

Events / (1 ps

• Time-dependent results in $B^0 \rightarrow \eta' K_s$

	BABAR	Belle Average
	(232M)	(275M)
S	$0.30 \pm 0.14 \pm 0.02$	0.65±0.18±0.04 0.43±0.11
С	$-0.21 \pm 0.10 \pm 0.02$	$0.19 \pm 0.11 \pm 0.05 - 0.04 \pm 0.08$

Compare with charmonium value: $\sin 2\beta = 0.73 \pm 0.04$ => difference $\Delta S = S - \sin 2\beta = -0.30 \pm 0.12$ 0.5 \Rightarrow difference $\Delta S_{exp} = S - \sin 2\beta = -0.30 \pm 0.12$

Flavor SU(3) is used to set bounds on time-dependent CP ulletasymmetry in $B \rightarrow \eta' K_s$:

 $\Delta S_{\rm th} = S(\eta' K_{\rm s}) - \sin 2\beta < |\xi_{\rm n'Ks}|$

• $\xi_{n'Ks}$ function of BF for related decay modes

∆t (ps)

BABAR

B decays to pairs of light isoscalar mesons

• ΔS_{th} will improve with better BF measurements

Charge asymmetries (direct CP)

- Many self-tagging (i.e. B flavor identified by final state) rare decays have competing tree and penguin amplitudes
- Interference between two decay amplitudes can lead to direct CP violation A_{CP}:

$$A_{CP} = rac{\Gamma(ar{B}
ightarrow ar{f}) - \Gamma(B
ightarrow f)}{\Gamma(ar{B}
ightarrow ar{f}) + \Gamma(B
ightarrow f)} \sim \sin \Delta \phi_{ ext{weak}} \sin \Delta \delta_{ ext{strong}}$$

- A_{CP} can be sizable if both weak and strong phases $\neq 0$
- Strong phases difficult to estimate
 => large theoretical uncertainties on predictions

$B^0 \to K^+ \pi^-$

• Observation of direct CP in $B^0 \rightarrow K^{\pm} \pi^{\mp}$ decays

 $B^{\pm} \rightarrow \eta^{(\prime)} h^{\pm}$

- Why A_{CP} in $B^+ \rightarrow \eta K^+ / \pi^+$ may be large:
 - η-η' mixing enhances B→η'K and suppresses B→ηK
 => in ηK interference between amplitude can be sizable
 => possible source of large direct CP violation
 - predicted in 1979! [Bander, Silverman, Soni, PRL 43, 242]
- Based on 89M $B\overline{B}$ pairs, BABAR saw ~2 σ significant A_{CP}: A_{CP}(ηK^+)=-0.52±0.24 and A_{CP}($\eta \pi^+$)=-0.44±0.18 [PRL 92, 061801]
- BABAR and Belle obtained new preliminary measurements:

		$\mathbf{N}_{_{BB}}$	$A_{CP}(\eta K^+)$	$A_{_{CP}}(\eta\pi^{+})$	$A_{_{CP}}(\eta \ni \pi^+)$
	Belle	152M	$-0.49 \pm 0.31 \pm 0.07$	$+0.07\pm0.15\pm0.03$	
	BABAR	232M	$-0.20\pm0.15\pm0.01$	$-0.13 \pm 0.12 \pm 0.01$	$+0.14\pm0.16\pm0.01$
	My aver	rage	-0.25±0.14	-0.05±0.09	
/ New resu (prelimin	lts nary)	→ (BA	BAR: BF($B \rightarrow \eta' \pi^+$	$(4.0\pm0.8\pm0.4)$ x1	0^{-6} signif. 5.4 σ)
	=> Res	ults co	mpatible with	no asymmetr	y (and with large A_c

Charge asymmetries: summary

- Several modes used to look for direct CP violation
- Errors as low as ±0.02

Radiative penguin decays

- $b \rightarrow s(d)\gamma$ proceed through EW penguin loop
- Inclusive decays
 - Branching fractions:
 - theoretically clean (no hadronization) $BF_{th} = (3.6 \pm 0.3) \times 10^{-4}$
 - experimentally difficult (fight background)
- good agreement

>
$$BF_{exp} = (3.5 \pm 0.3) \times 10^{-4}$$

- sensitive to new physics entering the loop
- <u>Charge asymmetries:</u>
 - experimental errors cancel
 - sensitive to new physics in loop and to new phases
- Exclusive decays
 - experimentally easier
 - theoretical uncertainites from hadronization

loop W s,d u,() dominant

A_{CP} in inclusive $b \rightarrow s\gamma$

- Theory prediction (SM):
 - small due to single GeV/c dominant amplitude => sensitive to new physics $- A_{CP} = 0.0044 + 0.0024 - 0.0014$ 28 5.29 [Hurth et.al., Nucl.Phys.B704(2005)56] mES (GeV/c²) mES (GeV/c² **Results:** BABAR (89M BB): $A_{CD} = 0.025 \pm 0.050 \pm 0.015$ Events/(1MeV/c²) なりたり Events/(1MeV/c²) 00 00 00 (a) h data 60 all background all background Belle (152M BB): BB + rare BB + rare IIII rare B IIII rare B $A_{_{\rm CP}} = 0.002 \pm 0.050 \pm 0.030$ 5.24 5.28 5.24 5.26 5.28 5.26 M_{bc}(GeV/c²) M_{bc}(GeV/c²)
- Results statistics limited, and in agreement with SM

Search for $b \rightarrow d\gamma$ exclusive decays

- Used in determination of Vtd
- $B^0 \rightarrow \omega \gamma$ and $B \rightarrow \rho \gamma$ expected to dominate
 - SM predictions: BF~ $(0.9-2.7)x10^{-6}$

Other radiative decay results

- Other radiative decay results not covered in this talk:
 - inclusive photon spectrum
 > *b*-quark mass
 - $B \rightarrow K^* \gamma$
 - direct CP
 - time-dependent CP
 - $b \rightarrow sl^+l^-$
 - BF & A_{CP} results in agreement with SM predictions
 - BF(B \rightarrow K l⁺l⁻)=(0.57+-0.07)x10⁻⁶ smallest BF measured in B decays

Polarization in charmless $B \rightarrow VV$

- *B* (spin-0) decays to two spin-1 particles:
 - spin-related configurations => 3 amplitudes
 - 11 observables:
 - **Polarization** fractions
 - Direct CP asymmetries
 - triple product asymmetries
- In SM
 - A_{00} is the natural spin configuration
 - A_{++} and A_{--} suppressed by m_{res}/m_{B} (one for each spin flip)
 - expect strong longitudinal polarization

$$\mathbf{f}_{\mathrm{L}} = |\mathbf{A}_{00}|^2 / (|\mathbf{A}_{00}|^2 + |\mathbf{A}_{++}|^2 + |\mathbf{A}_{--}|^2) \sim 1$$

 $B^0 \to \phi K^{*0}$

- But $f_L \sim 1$ for tree-dominated $B \rightarrow VV$ decays ($\rho\rho, \omega\rho^+$)
- Other penguin dominated modes still statistics limited

Polarization in $B \rightarrow VV$: summary

- The polarization puzzle in $B^0 \rightarrow \phi K^{*0}$ remains: $f_{\Gamma}(\phi K^{*0}) \sim 0.5$
- For tree-dominated VV mode: f_{I} (tree)~1
- Currently no convincing explanation
- Possible scenarios:
 - poorly understood SM strong interaction effects?
 - effects from new physics?
- Additional measurements will help solve this problem

Summary

- We have presented recent highlights of the study of rare *B* decays:
 - several measurements of branching fractions
 - useful to contraint phenomenological models
 - Search for direct CP violation in *B* decays:
 - Direct CP observed in $B^0 \rightarrow K^{\pm} \pi^{\mp}$ decays
 - many other measurements (non significant)
 - Radiative decays
 - $B \rightarrow VV$ decays
 - rich program, and puzzle in polarization results

Conclusion

- Rare *B* decays are a very rich source of information on
 - the standard model
 - physics beyond the standard model
- The experiments at the *B* factories have produced many new results with their current data samples
- Many more rare-*B* decay results to come with a combined >1000fb⁻¹ by 2006!