

Rare B decays at the B Factories

Henning Flächer

Royal Holloway, University of London

Overview

- Motivation
- Semileptonic B Decays
 - Exclusive Decays
 - ❖ V_{cb}, V_{ub} and Form Factors
 - > Inclusive Decays

- Radiative Penguin Decays
 - > b→sγ, b→dγ
- Charmless Hadronic B Decays
 - > Bounds on ΔS and sin2 β from B \rightarrow η' K_s
 - > B⁺ \rightarrow K⁺ π - π ⁺
- B → Charm Decays via W-exchange and Annihilation
 - $\rightarrow B \rightarrow D_s D_s$
 - > $B \rightarrow D_s \varphi$
- Conclusions

CKM matrix and Unitarity Triangle

In the Standard Model, couplings between quarks of different flavour are described by the CKM matrix.

It relates weak to mass eigenstates.

CKM matrix has 4 free parameters:

- 3 Euler angles
- 1 free phase

Unitary!

Can be visualised as triangle:

Semileptonic Decays

Why semileptonic decays?

|V_{ub}| and |V_{cb}| are crucial in testing CKM unitarity and SM mechanism for CP violation

Hadronic and leptonic currents factorise, theoretical uncertainties are under control giving access to $|V_{ub}|$ and $|V_{cb}|$

Different uncertainties in inclusive and exclusive decays → study both!

Exclusive $|V_{cb}|$

In exclusive decays we need formfactors to relate $B \to D^* \ell v$ decay rate to $|V_{cb}|$

$$BR(B \to D^*lv) \sim |V_{cb} F_{D^*}(w=1)|^2$$

_ w: D* boost in B rest frame

- \rightarrow F(w) is calculable at w = 1, i.e. zero-recoil
 - encodes QCD ignorance of hadronisation
 - ❖ F(w) = 1 at the heavy-quark limit $(m_b = m_c = \infty)$

* Lattice calculation gives
$$F(1)=0.919^{+0.030}$$
 Hashimoto et al, PRD 66 (2002) 014503

- Shape of F(w) unknown
 - Parameterized with ρ^2 (slope at w = 1) and R_1 , R_2
- B → D*lv decay rate in terms of helicity amplitudes is given by:

$$\begin{split} \frac{d\Gamma(B \to D^*\ell\nu)}{dq^2 d\cos\theta_\ell d\cos\theta_V d\chi} &= \frac{3G_F^2 |V_{cb}|^2 P_{D^*} q^2}{8(4\pi)^4 M_B^2} \times \\ & \left\{ H_+^2 (1 - \cos\theta_\ell)^2 \sin^2\theta_V + H_-^2 (1 + \cos\theta_\ell)^2 \sin^2\theta_V \right. \\ & \left. + 4H_0^2 \sin^2\theta_\ell \cos^2\theta_V - 2H_+ H_- \sin^2\theta_\ell \sin^2\theta_V \cos2\chi \right. \\ & \left. - 4H_+ H_0 \sin\theta_\ell (1 - \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi \right. \\ & \left. + 4H_- H_0 \sin\theta_\ell (1 + \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi \right\} \end{split}$$

Angular kinematic variables:

The Helicity amplitudes H_i depend on Form Factor ratios R1 and R2

Exclusive $|V_{cb}|: B \rightarrow D^* |V$

Extract D*Iv form factors from unbinned maximum likelihood fit to full 4-dim PDF

stat. MC stat. syst.

$$R_1 = 1.396 \pm 0.060 \pm 0.035 \pm 0.027,$$

 $R_2 = 0.885 \pm 0.040 \pm 0.022 \pm 0.013,$
 $\rho^2 = 1.145 \pm 0.059 \pm 0.030 \pm 0.035,$

Compared to FF from previous CLEO measurement, uncertainty on $|V_{cb}|$ is reduced from +2.9% -2.6% \rightarrow ± 0.5% Factor 5 improvement of FF uncertainty

Systematic error on $|V_{cb}|$ from 4.5% \rightarrow 3.5%

One dimensional projections of the fit result:

$$|V_{\rm cb}| = 37.6 \pm 0.3(stat) \pm 1.3(syst) \stackrel{+1.5}{_{-1.3}}(theory) \times 10^{-3}$$

hep-ex/0602023

Also leads to a reduction in systematic error on $|V_{ub}|$ from Babar endpoint analysis Systematic error on BF reduced from 6.7% \rightarrow 2.8%

Exclusive |V_{ub}|

- Measure specific final states, e.g., $B \rightarrow \pi l v$, $B \rightarrow \rho l v$
 - > Can achieve good signal-to-background ratio
 - ▶ Branching fractions are O(10⁻⁴) → statistics limited
- Need form factors to extract $|V_{ub}|$

$$\frac{d\Gamma(B \to \pi \ell \, \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 \, p_\pi^3 \left| f_+(q^2) \right|^2 \qquad \qquad \text{One FF for } B \to \pi l \nu$$
(massless lepton)

- > Theo. Uncertainties complementary to inclusive approach!
- $f_+(q^2)$ calculations exist based on:
 - > Lattice QCD ($q^2 > 16 \text{ GeV}^2$)
 - ❖ recent "unquenched" calculations → ~11% uncertainty
 - > Light Cone Sum Rules (q^2 < 14 GeV²) → ~10% uncertainty
 - > Quark models (ISGW2) ... and other approaches

HPQCD hep-lat/0408019 Fermilab hep-lat/0409166 Ball,Zwicky hep-ph/0406232

Exclusive $|V_{ub}|$: $B \to \pi \ell \nu$

Babar untagged analysis:

 $v = missing(\vec{E}, \vec{p})$ of the event

Fit of the signal yield using the B mass and ΔE in bins of q^2 .

- Measure q²-dependence of the form factor
- Compare with theoretical calculations

hep-ex/0507003

Inclusive $b \rightarrow ulv$: Strategies

• We use 3 variables to describe B → XI v decays:

 E_1 = lepton energy

 q^2 = lepton-neutrino mass squared

 m_X = hadron system mass

Combine cuts on these variables to maximise phase space and minimise theory uncertainty

• Signal events have smaller $m_X \rightarrow$ larger E_I and q^2

Inclusive |V_{ub}|: Endpoint

Measure rate in region where b→clv is largely forbidden, previously large extrapolation

Calculations by Bosch, Lange, Neubert & Paz translate partial rate directly into |V_{ub}|:

Babar:
$$|V_{ub}| = (4.44 \pm 0.25_{exp} ^{+0.42}_{-0.38} \pm 0.22_{theory}) \times 10^{-3}$$

Belle: $|V_{ub}| = (5.08 \pm 0.47 \pm 0.42_{\it sF}^{+0.26}) \times 10^{-3}$

Inclusive |V_{ub}|: Hadronic B tag

Fully reconstructed B recoil analysis:

Advantages:

- clean sample
- kinematics known
- B flavour known

Disadvantage:

low statistics

 D^* B_{reco} X_u e^+ B_{reco}

Calculations of Bosch, Lange, Neubert, Paz hep-ph/0402094, 0504071

Different phase space acceptances result in different theory errors!

Belle:

hep-ex/0505088

$\Delta\Phi$	$ V_{ub} \times 10^3$	stat	syst	$b \rightarrow u$	$b \rightarrow c$	SF	th.
M_X/q^2	4.70	5.0	4.4	3.1	2.7	4.2	$+4.8 \\ -5.2$
M_X	4.09	4.6	3.5	3.1	1.1	4.5	$+3.5 \\ -3.8$
P_{+}	4.19	4.7	4.6	3.2	4.4	5.8	$^{+3.4}_{-3.5}$

Babar:

hep-ex/0507017

$$|V_{ub}| = (4.65 \pm 0.24_{\rm stat} \pm 0.24_{\rm syst} ^{+0.46}_{-0.38SF} \pm 0.23_{\rm th}) \times 10^{-3}$$

 M_X <1,7GeV P_+ = E_X - $|p_X|$ >0.66

M_x<1,7GeV, q²>8GeV

0.5

M_X<1.7GeV, q²>8GeV

P (GeV/c)

-20

Inclusive |V_{ub}|

Relating $b \rightarrow ulv$ to $b \rightarrow s\gamma$ using weight functions:

largely SF independent!

$$\Gamma(B \to X_u \ell \nu) = \frac{|V_{ub}|^2}{|V_{ts}|^2} \int W(E_{\gamma}) \frac{d\Gamma(B \to X_s \gamma)}{dE_{\gamma}} dE_{\gamma}$$

Leibovich, Low, Rothstein hep-ph/0005124,0105066

Weight function

Standard local OPE for full rate: Uraltsev hep-ph/9905520 Hoang,Ligeti, Manohar hep-ph/9811239

LLR:
$$M_X < 1.67 \text{ GeV}$$
:
 $|V_{ub}| = (4.43 \pm 0.38_{\text{stat}} \pm 0.25_{\text{syst}} \pm 0.29_{\text{theo}}) \ 10^{-3}$

OPE: M_X < 2.50 GeV:

$$|V_{ub}| = (3.84 \pm 0.70_{stat} \pm 0.30_{syst} \pm 0.10_{theo}) \ 10^{-3}$$

reduced theory error as no extrapolation to full rate necessary

|V_{ub}| Summary

Exclusive |V_{ub}|:

4% exp., ~11% theory uncertainty

Errors on $|V_{ub}|$ dominated by FF normalization

Inclusive |V_{ub}|:

$$|V_{ub}|$$
 = (4.38 ± 0.19 ± 0.27) x 10⁻³
7.6 % total uncertainty!

Main improvement due to better knowledge of "shape function" parameters

Radiative B Decays: b→s,d γ

b → s,d transition is a Flavour Changing Neutral Current

 \triangleright forbidden in the standard model at tree-level \overline{b} -

 $\overline{\overline{d}}, \overline{\overline{s}}$

- > exists only at loop level
- heavy particles dominate in the loop

- in SM: sensitive to 'top' CKM parameters: V_{tb}V*_{tq}
- sensitive to high virtual mass scale, e.g. from new physics
- We are unable to measure the parton level decay rate for b→sγ, however:

$$\Gamma(B \to X_s \gamma) = \Gamma(b \to s \gamma) + \Delta^{nonpert}$$

Theoretical Framework: Operator Product Expansion separate weak scale from *B*-mass scale

 Theoretical uncertainty ~ 10%, mainly from contribution of higher order diagrams in the expansion.

b→sy Spectra and Moments

Measure photon spectrum in b→sγ decays:

Two main approaches:

- Inclusive:
 - identify photon
- Semi-Inclusive:
 - reconstruct many exlusive final states (up to 38!)

Difficult measurement: Overwhelming background from π^0 s for $E_v < 1.8$ GeV

Measurement of photon spectrum and its moments gives information about inner structure of B meson:

- b quark mass
- Fermi momentum

BR(b \rightarrow s γ) Average

- Experiments measure PBF's above different photon energies
- Need to be extrapolated to $E_v > 1.6$ GeV to compare with theory
- Extrapolation factors based on HQE fit to b→clv and b→sγ moments:

Outlook:

Exp. error will decrease with luminosity Factor ~10 more data by 2008
Theo. uncertainty of 5% realistic with NNLO calculation

Fit to Moments of Inclusive Decay **Distributions**

Heavy Quark Expansions connect the inclusive decay width to |V_{cb}|:

 Γ_{SL} proportional to $|V_{cb}|^2$, but <u>perturbative</u> and <u>non-perturbative</u> corrections to free quark decay needed \rightarrow double expansion in $\underline{\alpha}_s$ and $\underline{1/m}_b$

$$\Gamma_{clv} = \frac{G_F m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert} A_{nonpert} \cong |V_{cb}|^2 f_{OPE}(m_b, m_c, a_i)$$

4 parameters at order α_s^2 and $1/m_h^3$

Need to determine non-perturbative parameters!

→ Use moments of inclusive distributions where same parameters appear:

$$\langle X^{n} \rangle (E_{cut}) = \frac{\int (X - X^{0})^{n} \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX} \cong f_{OPE}^{'}(m_{b}, m_{c}, a_{i})$$

$$E_{l} \geq E_{cut}$$

- Hadronic Mass distribution $\langle M_X^n \rangle \to \langle \overline{M_X} \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$ Lepton Energy spectrum $\langle E_\ell^n \rangle \to \langle E_\ell^n \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$ Photon Energy spectrum $\langle E_\gamma^n \rangle \to \langle E_\gamma^n \rangle (m_b, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$.

Inclusive |V_{cb}| - Fit to Moments

Result of fit to all moment measurements:

|V_{cb}| @ 2% m_b < 1% m_c @ 5%

In MS scheme:

 $\frac{m_b(m_b)}{m_c(m_c)}$ = 4.20 ± 0.04 GeV

 $\overline{m}_{c}(\mu)/\overline{m}_{b}(\mu) = 0.235 \pm 0.012$

courtesy of N.Uraltsev

Good agreement with other similar analyses:

Bauer et al. hep-ph/0408002 DELPHI hep-ex/0510024

		exp	HQE	Γ _{SL}
V _{cb} =	(41.96	± 0.23	± 0.35	± 0.59) 10 ⁻³
m _b =	4.590	± 0.025	± 0.030	GeV
m _c =	1.142	± 0.037	± 0.045	GeV
$\mu_{\pi}^2 =$	0.401	± 0.019	± 0.035	GeV ²
$\mu_{G}^{2} =$	0.297	± 0.024	± 0.046	GeV ²
$\rho_D^3 =$	0.174	± 0.009	± 0.022	GeV ³
$\rho_{LS}^3 =$	-0.183	± 0.054	± 0.071	GeV ³
BR _{clv} =	10.71	± 0.10	± 0.08	%

b→sy

b→clv

4.6

m_b (GeV)

4.7

combined

4.5

0.8

0.7

0.6

0.4

0.3

0.2

4.4

 (GeV_2^2)

b→dγ

Motivation:

branching fractions

Average

- $b \rightarrow d\gamma$ transition, BF $\infty |V_{td} V_{tb}|^2$
- SM prediction: 0.9 1.8 x 10⁻⁶
- clean SM prediction for ratio of $B \rightarrow \rho/\omega\gamma$ and $B \rightarrow K^*\gamma$:

Ali and Parkhomenko, Eur.Phys.JC 23,89 (2002) Ali et al, PLB 595,323 (2004)

difference in dynamics (such as W-annihilation) $\Delta R pprox 0.1 \pm 0.1$

form factor ratio $\zeta^2 \approx 0.85 \pm 0.1$ (largest uncertainty)

$$egin{aligned} rac{\overline{\mathcal{B}}[B
ightarrow (
ho/\omega)\gamma]}{\mathcal{B}(B
ightarrow K^*\gamma)} &= \left|rac{V_{td}}{V_{ts}}
ight|^2 \left(rac{1-m_
ho^2/M_B^2}{1-m_{K^*}^2/M_B^2}
ight)^3 \zeta^2 [1+\Delta R] \end{aligned}$$

b→dγ

Good agreement between Babar and Belle!

B(
$$B^0 \rightarrow K^{*0} \gamma$$
) = (40.1 ± 2.0) x 10⁻⁶

$$B(B^+ \rightarrow K^{*+}\gamma) = (40.3 \pm 2.6) \times 10^{-6}$$

HFAG Summer 2005

UT Constraints from Sides and Tree Processes

$$|V_{td}/V_{ts}| = 0.18 \pm 0.03$$

Other Rare B Decays

- Charmless Hadronic B Decays
 - > I will be selective and only pick 2 examples:
 - ♦ Bounds on Δ S and sin2 β from B \rightarrow η' K_s
 - $\star B^+ \rightarrow K^+ \pi^- \pi^+$
- B → Charm Decays via W-exchange
 - $\rightarrow B \rightarrow D_s D_s$
- B → Charm Decays via Annihilation
 - > $B \rightarrow D_s \varphi$
 - No decay that occurs through annihilation has been observed
- Decays are suppressed in the Standard Model
 - Standard Model BR of order 10⁻⁵ − 10⁻⁷
- Potential for New Physics
 - Beyond SM contributions can lead to enhanced BR's

Rare Charmless B Decays

- Too many decays to be discussed in detail...
- Rare Charmless B decays can be used to study
 - Interfering standard model amplitudes
 - Amplitudes of CKM parameters and angles
 - Effects of higher mass particles in loops
- Measurements are used to improve theoretical models

Bounds on the tree contribution in $B \rightarrow \eta' K_s$

Difference in $sin(2\beta)$ from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ penguin.

$$B \rightarrow \psi K_s \sin 2\beta = 0.69 \pm 0.03$$

$$B \rightarrow \eta' K_s \sin 2\beta_{eff} = 0.50 \pm 0.09$$

It's possible to set theoretical bounds on this difference:

$$\Delta S_{\text{th}} = S(\eta' K_{S}) - \sin 2\beta < |\xi_{\eta' K}|$$

is a function of BF for Flavour SU(3) related decay modes:

 $sin(2\beta^{eff})/sin(2\varphi_1^{eff})$

$$\begin{split} |\xi_{\eta'K_S}| \; < \; \left|\frac{V_{us}}{V_{ud}}\right| \left[0.59 \sqrt{\frac{\mathcal{B}(\eta'\pi^0)}{\mathcal{B}(\eta'K^0)}} + 0.33 \sqrt{\frac{\mathcal{B}(\eta\pi^0)}{\mathcal{B}(\eta'K^0)}} + 0.14 \sqrt{\frac{\mathcal{B}(\pi^0\pi^0)}{\mathcal{B}(\eta'K^0)}} \right. \\ & + 0.53 \sqrt{\frac{\mathcal{B}(\eta'\eta')}{\mathcal{B}(\eta'K^0)}} + 0.38 \sqrt{\frac{\mathcal{B}(\eta\eta)}{\mathcal{B}(\eta'K^0)}} + 0.96 \sqrt{\frac{\mathcal{B}(\eta\eta')}{\mathcal{B}(\eta'K^0)}} \right] \end{split}$$

Will improve with more measurements!

Theory: Δ S < 0.05

Experiment: Δ S = 0.19+-0.09

If $\Delta S >> 0.1$

→ signature for new physics

Other approaches: Buchalla etal., Beneke

hep-ph/0303171

HFAG Summer 2005

η' π0	< 3.7 x10 ⁻⁶	90% CL
η πο	< 2.5 x10 ⁻⁶	90% CL
π0 π0	$= 1.45 \pm 0.29 \times 10^{-6}$	
η' η'	< 10 x10 ⁻⁶	90% CL
ηη	< 2.0 x10 ⁻⁶	90% CL
η η'	< 4.6 x10 ⁻⁶	90% CL
η'K ⁰	$= 63.2 \pm 3.3 \times 10^{-6}$	

Dalitz plot analysis of $B^+ \rightarrow K^+ \pi^- \pi^+$

B⁺ \rightarrow K⁺π⁻π⁺ occurs via intermediate quasi two-body resonances (e.g. K^{*}π, ρK) as well as non-resonant Theoretical models predict BR and CP asymmetries for $B\rightarrow K^* \pi$ and $B\rightarrow \rho$ K

General good agreement!

Belle finds 3.9σ evidence for direct CP violation in B+→ ρ K+ from a phase and magnitude analysis

Babar finds 2.4σ for A_{cp}

(Distinguish A_{cp} from direct CP violation)

First observation of $B \rightarrow f_2 K$

Babar:

Mode	$\mathcal{B}(B^+ \to \text{Mode})(10^{-6})$	A_{CP} (%)
$K^+\pi^-\pi^+$ Total	$64.1 \pm 2.4 \pm 4.0$	$-1.3 \pm 3.7 \pm 1.1$
$K^{*0}(892)\pi^+; K^{*0}(892) \to K^+\pi^-$	$8.99 \pm 0.78 \pm 0.48^{+0.28}_{-0.39}$	$6.8 \pm 7.8 \pm 5.7^{+4.0}_{-3.5}$
$(K\pi)_0^{*0}\pi^+; (K\pi)_0^{*0} \to K^+\pi^-$	$34.0 \pm 1.7 \pm 1.5^{+1.2}_{-1.6}$	$-6.4 \pm 3.2 \pm 2.0^{+1.1}_{-1.7}$
$\rho^{0}(770)K^{+}; \rho^{0}(770) \to \pi^{+}\pi^{-}$	$5.07 \pm 0.75 \pm 0.35^{+0.42}_{-0.68}$	$32 \pm 13 \pm 6^{+3}_{-5}$
$f_0(980)K^+; f_0(980) \to \pi^+\pi^-$	$9.47 \pm 0.97 \pm 0.46^{+8.42}_{-0.75}$	$8.8 \pm 9.5 \pm 2.6^{+9.3}_{-5.0}$
$\chi_{c0}K^{+}; \chi_{c0} \to \pi^{+}\pi^{-}$	$0.66 \pm 0.22 \pm 0.07 \pm 0.03$	_
$K^{+}\pi^{-}\pi^{+}$ nonresonant	$2.85 \pm 0.64 \pm 0.41^{+0.70}_{-0.34}$	_

Belle:

Mode	$\mathcal{B}(B^{\pm} \to Rh^{\pm} \to K^{\pm}\pi^{\pm}\pi^{\mp}) \times 10^6$	A_{CP} (%)
$K^{\pm}\pi^{\pm}\pi^{\mp}$ Charmless	$48.8 \pm 1.1 \pm 3.6$	$+4.9 \pm 2.6 \pm 2.0$
$K^*(892)[K^{\pm}\pi^{\mp}]\pi^{\pm}$		$-14.9 \pm 6.4 \pm 2.0^{+0.8}_{-0.8}$
$K_0^*(1430)[K^{\pm}\pi^{\mp}]\pi^{\pm}$		$\pm 7.6 \pm 3.8 \pm 2.0^{+2.0}_{-0.9}$
$\rho(770)^{0}[\pi^{+}\pi^{-}]K^{\pm}$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$+30 \pm 11 \pm 2.0^{+11}$
$f_0(980)[\pi^+\pi^-]K^{\pm}$	$8.78 \pm 0.82 \pm 0.65^{+0.55}_{-1.64}$	$-7.7 \pm 6.5 \pm 2.0^{+4.1}_{-1.6}$
$(f_2(1270)[\pi^+\pi^-]K^{\pm}$	$0.75 \pm 0.17 \pm 0.06^{+0.11}_{-0.18}$	$-59 \pm 22 \pm 2.0^{+3}_{-3}$
Non-resonant	_	_
$\chi_{c0}[\pi^{+}\pi^{-}]K^{\pm}$	$0.56 \pm 0.06 \pm 0.04^{+0.12}_{-0.04}$	$-6.5 \pm 20 \pm 2.0^{+2.9}_{-1.4}$

First evidence of direct CP violation in a charged B decay

$B^0 \to D^{(*)}_s + D^{(*)}_s$

Decay proceeds via W-exchange highly suppressed in SM

Difficult to calculate using factorisation approach as energy release only ~1 GeV

- perturbative QCD (pQCD) hep-ph/0308243
- estimates of non-factorisable contributions (CL-GC) hep-ph/0501031
 chiral loops and tree level amplitudes generated by soft gluon emission forming a gluon condensate

B Decays	Branching Fra	$\cot (\times 10^{-5})$
	pQCD[2]	CL-GC [3]
$B^0 \to D_s^- D_s^+$	$7.8\pm^{2.0}_{1.6}$	25.0
$B^0 \to D_s^{*-} D_s^+$	$6.0\pm_{1.1}^{1.6}$	33.0
$B^0 \to D_s^{*-} D_s^{*+}$	$8.5\pm^{2.0}_{1.8}$	54.0

Babar (hep-ex/0510051) @ 90% C.L.

$$\mathcal{B}(B^0 \to D_s^- D_s^+) < 1.0 \times 10^{-4},$$

 $\mathcal{B}(B^0 \to D_s^{*-} D_s^+) < 1.3 \times 10^{-4},$
 $\mathcal{B}(B^0 \to D_s^{*-} D_s^{*+}) < 2.4 \times 10^{-4}.$

Belle (hep-ex/0508040) @ 90% C.L. B(B⁰ \rightarrow D_s-D_s+) < 2.0 x 10⁻⁴

No signal observed and no evidence of significant W-exchange component in B⁰→D⁺D⁻, but:

Sensitivity to test SM prediction

$B \rightarrow D_s \phi$

Standard Model:

Highly suppressed in SM: perturbative QCD: 3 x 10⁻⁷ QCD improved factorisation 7 x 10⁻⁷

New Physics: FCNC

Sensitivity to New Physics:

type II 2Higgs Doublet Model: 8 x 10⁻⁶

MSSM with R-parity violation: 3 x 10⁻⁴

Babar limit @ 90% C.L. BR($B^- \to D_s^- \varphi$) < 1.9 x 10⁻⁶ BR($B^- \to D_s^+ \varphi$) < 1.2 x 10⁻⁵

Previous CLEO limit @ 90% C.L.

BR(B
$$\to$$
D_s· ϕ) < 3 x 10⁻⁴
BR(B· \to D*_s· ϕ) < 4 x 10⁻⁴

Phys.Lett.B319: 365,1993

Measurement still one order of magnitude away from SM prediction but limits on NP possible.

Conclusions

- Precison measurements of SM parameters from Semileptonic Decays:

 - > |V_{ub}| at 8% probing consistency with sin(2β) and hence SM
 - \rightarrow m_b (<1%) and m_c (5%)
- Radiative B decays
 - \triangleright BR(B→X_s γ) @ 7% important constraint on many NP models
 - b→d γ constraining V_{td}V_{tb}* complementary to B_s mixing
- Wide variety of charmless hadronic B decays
 - > evidence for direct CPV in B⁺ $\rightarrow \rho^0$ K⁺
- First results from B decays via W-exchange & annihilation
 - sensitivity starting to test SM
- Many more results to come

Backup Slides

BaBar & Belle Detectors

BFactory Performances

Fit to Moments of Inclusive Decay Distributions

The Operator Product Expansion separates perturbative from non-perturbative scales in a systematic way:

$$\Gamma_{SL}(B \to X_c l \nu) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert}(r, \mu)$$
chromomagnetic expec. value
$$\frac{kinetic \text{ expec. value}}{value}$$

$$kinetic \text{ scheme}$$

$$r \equiv (m_c / m_b)^2$$

$$r \equiv (m_c / m_b)^2$$
chromomagnetic expec. value
$$\frac{\mu_a^2 + \rho_D^3 + \rho_{LS}^3}{m_b} - 2(1 - r)^4 \frac{\mu_G^2 + \rho_D^3 + \rho_{LS}^3}{m_b^2} + d(r) \frac{\rho_D^3}{m_b^3} + O(1/m_b^4)$$

Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080 Gambino & Uraltsev, Eur.Phys.J. C34, 181 (2004)

Moments of hadronic mass, lepton energy and photon energy in b→sg distribution depend on same heavy quark parameters:

$$\langle M_X^n \rangle \to \langle M_X \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$$

$$\langle E_\ell^n \rangle \to \langle E_\ell^n \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s)$$

$$\langle E_\gamma^n \rangle \to \langle E_\gamma^n \rangle (m_b, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) .$$

mb and μ_π² are used to parameterise both B→Xs γ and B→Xu Iv spectra

Many moment measurements (~50) allow to fit for all parameters up to 1/m_b³

b→sγ Branching Fraction

- Partial branching fractions are measured above different photon energies
- Need to be extrapolated to E_{γ} > 1.6 GeV to compare with theory
- Extrapolation factors based on HQE fit to clv and bsg moments

			Α
Mode	Reported \mathcal{B}	E_{\min}	\mathcal{B} at E_{\min}
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306 \pm 41 \pm 26$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	_
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351 \pm 32 \pm 29$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$
BABAR Inc.[7]	_	1.9	$367 \pm 29 \pm 34 \pm 29$

Extrapolation Factors for BF

New HFAG Average:

BR(B
$$\rightarrow$$
X_s γ) = (3.55 ± 0.24 ± 0.10 +-0.03) 10⁻⁴

7% uncertainty

SM prediction:

 $3.57 \pm 0.3 \times 10^{-4}$ Buras et al. (hep-ph/0203135) $3.44 \pm 0.4 \times 10^{-4}$ Neubert (hep-ph/0408179) $3.61 \pm 0.42 \times 10^{-4}$ Hurth et al. (hep-ph/0312260)

Radiative B Decays

Rare charmless hadronic B decays

A_{cp} in Rare Charmless B Decays

CP Asymmetry in Charmless B Decays

Dalitz plot analysis of $B^+ \rightarrow K^+ \pi^+ \pi^-$

Babar (hep-ex/0507004):

Mode	$\mathcal{B}(B^+ \to \text{Mode})(10^{-6})$	90% CL UL (10 ⁻⁶)	A_{CP} (%)
$K^+\pi^-\pi^+$ Total	$64.1 \pm 2.4 \pm 4.0$	_	$-1.3 \pm 3.7 \pm 1.1$
$K^{*0}(892)\pi^+; K^{*0}(892) \rightarrow K^+\pi^-$	$8.99 \pm 0.78 \pm 0.48^{+0.28}_{-0.39}$	_	$6.8 \pm 7.8 \pm 5.7^{+4.0}_{-3.5}$
$(K\pi)_0^{*0}\pi^+$; $(K\pi)_0^{*0} \rightarrow K^+\pi^-$	$34.0 \pm 1.7 \pm 1.5^{+1.2}_{-1.6}$	_	$-6.4 \pm 3.2 \pm 2.0^{+1.1}_{-1.7}$
$\rho^{0}(770)K^{+}; \rho^{0}(770) \rightarrow \pi^{+}\pi^{-}$	$5.07 \pm 0.75 \pm 0.35^{+0.42}_{-0.68}$	_	$32 \pm 13 \pm 6^{+8}_{-5}$
$f_0(980)K^+$; $f_0(980) \rightarrow \pi^+\pi^-$	$5.07 \pm 0.75 \pm 0.35^{+0.42}_{-9.68}$ $9.47 \pm 0.97 \pm 0.46^{+0.42}_{-0.78}$	_	$8.8 \pm 9.5 \pm 2.6^{+9.3}_{-5.0}$
$\chi_{c0}K^+; \chi_{c0} \rightarrow \pi^+\pi^-$	$0.66 \pm 0.22 \pm 0.07 \pm 0.03$	< 1.1	_
$K^{+}\pi^{-}\pi^{+}$ nonresonant	$2.85 \pm 0.64 \pm 0.41^{+0.70}_{-0.34}$	< 6.5	_

Belle (hep-ex/0512066):

Mode	$\mathcal{B}(B^{\pm} \rightarrow Rh^{\pm} \rightarrow K^{\pm}\pi^{\pm}\pi^{\mp}) \times 10^{6}$	$\mathcal{B}(B^{\pm} \to Rh^{\pm}) \times 10^{6}$	A_{CP} (%)
$K^{\pm}\pi^{\pm}\pi^{\mp}$ Charmless	$48.8 \pm 1.1 \pm 3.6$	_	$+4.9 \pm 2.6 \pm 2.0$
$K^*(892)[K^{\pm}\pi^{\mp}]\pi^{\pm}$	$6.45 \pm 0.43 \pm 0.48^{+0.25}_{-0.35}$	$9.67 \pm 0.64 \pm 0.72^{+0.37}_{-0.52}$	$-14.9 \pm 6.4 \pm 2.0^{+0.8}_{-0.8}$
$K_0^*(1430)[K^{\pm}\pi^{\mp}]\pi^{\pm}$		$51.6 \pm 1.7 \pm 6.8^{+1.8}_{-3.1}$	$+7.6 \pm 3.8 \pm 2.0^{+2.0}_{-0.9}$
$\rho(770)^{0}[\pi^{+}\pi^{-}]K^{\pm}$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$3.89 \pm 0.47 \pm 0.29^{+0.32}_{-0.29}$	$+30 \pm 11 \pm 2.0^{+11}_{-4}$
$f_0(980)[\pi^+\pi^-]K^{\pm}$	$8.78 \pm 0.82 \pm 0.65^{+0.55}_{-1.64}$	_	$-7.7 \pm 6.5 \pm 2.0^{+4.1}_{-1.6}$
$f_2(1270)[\pi^+\pi^-]K^{\pm}$	$0.75 \pm 0.17 \pm 0.06^{+0.11}_{-0.18}$	$1.33 \pm 0.30 \pm 0.11^{+0.20}_{-0.32}$	$-59 \pm 22 \pm 2.0^{+3}_{-3}$
Non-resonant	_	$16.9 \pm 1.3 \pm 1.3^{+1.1}_{-0.9}$	_
$\chi_{c0}[\pi^{+}\pi^{-}]K^{\pm}$	$0.56 \pm 0.06 \pm 0.04^{+0.12}_{-0.04}$	$112 \pm 12 \pm 18^{+24}_{-8}$	$-6.5 \pm 20 \pm 2.0^{+2.9}_{-1.4}$

Belle parameterises $A_{cp} = -(2b \cos \phi)/(1+b^2)$

b!=0 is condition for DCPV! (even if $A_{cp} = 0$)

First evidence of direct CP violation in a charged B decay