New States above Charm Threshold

Estia Eichten Fermilab

with K. Lane, C. Quigq hep-ph/0511179

Narrow States and QCD dynamics
Missing Charmonium States
X(3872), Z(3931), Y(3940), Y(4260)...
Summary and Outlook

Narrow States and QCD Dynamics

- QCD dynamics is much richer than present phenomological models - Lattice QCD
- Solution Narrow states allow precise experimental probes of the subtle nature of QCD dynamics
- Surprising new narrow states have been observed and more may be expected

Adding Gluons - Lattice QCD

QWG Yellow Report [hep-ph/0412158]

Adding Gluons - Lattice QCD

Juge, Kuti, Morningstar

PRL 82:4400 (1999) PRL 90:161601 (2003)

> Hybrid Potentials

Figure 2. Wavefunctions and potentials for the various hybrid/meson states.

Including light quark loops

C. T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], Phys. Rev. Lett. 92, 022001 (2004) [arXiv:hep-lat/0304004].

New Narrow Mesons

Chiral Symmetry and Heavy-Light systems:
D_s(0⁺) and D_s(1⁺)

Quarkonium systems:
 equal masses: h_c, η' and ...
 unequal masses: B_c

Thresholds and the X(3872), Y(3940), Y(4260), ...

Quarkonium Systems

Charmonium

By 2002 -twenty five years since any new charmonium state observed.

In the last three years:
 η'_c and h_c below D D threshold
 η''_c and χ'_{c2}
 X(3872), Y(3940), Y(4260), ...

Why?
 New experiments and more lumunosity
 New production channels – B decays, γγ, double charmonium production, gg in high energy hadron colliders.

Charmonium States

Expectations circa 2002

IADLE .	II: Hadronic decay widt	ins of charmonium states.
$c\bar{c}$ state	Decay	Partial Width
1^1S_0	$\eta_c ightarrow gg$	$17.4 \pm 2.8 \text{ MeV} [21]$
1^3S_1	$J\!/\!\psi ightarrow ggg$	$52.8 \pm 5 \text{ keV} [22]$
$1^{1}P_{1}$	$h_c ightarrow ggg$	$720 \pm 320 \text{ keV}^a$
$1^{3}P_{0}$	$\chi_{c0} ightarrow gg$	$14.3 \pm 3.6 \text{ MeV}^b$
$1^{3}P_{1}$	$\chi_{c1} ightarrow ggg$	$0.64\pm0.10~{\rm MeV}^b$
$1^{3}P_{2}$	$\chi_{c2} ightarrow gg$	$1.71 \pm 0.21 \text{ MeV}^b$
2^1S_0	$\eta_c^\prime o gg$	$8.3 \pm 1.3 \ { m MeV}^c$
	$\eta_c' \to \pi \pi \eta_c$	$160 \ \mathrm{keV}^d$
2^3S_1	$\psi' ightarrow ggg$	$23 \pm 2.6 \text{ keV} [22]$
	$\psi' ightarrow \pi \pi J\!/\!\psi$	$152 \pm 17 \text{ keV} [22]$
	$\psi' ightarrow \eta J\!/\!\psi$	$6.1 \pm 1.1 \text{ keV} [22]$
$1^1 D_2$	$\eta_{c2} ightarrow gg$	110 keV^e
	$\eta_{c2} \to \pi \pi \eta_c$	$\approx 45 \ \mathrm{keV}^d$
$1^{3}D_{1}$	$\psi ightarrow ggg$	216 keV^{f}
	$\psi ightarrow \pi \pi J\!/\!\psi$	$43 \pm 15 \text{ keV}^g$
$1^3 D_2$	$\psi_2 ightarrow ggg$	$36 \ \mathrm{keV}^{f}$
	$\psi_2 \to \pi \pi J/\psi$	$\approx 45 \text{ keV}^d$
1^3D_3	$\psi_3 ightarrow ggg$	$102 \ \mathrm{keV}^{f}$
	$\psi_3 ightarrow \pi \pi J/\psi$	$\approx 45 \text{ keV}^d$

TABLE II: Hadronic decay widths of charmonium states.

^{*a*}Computed from ³P_J rates using formalism of [23]; also see [24]. ^{*b*}Compilation of data analyzed by Maltoni, Ref. [23]. ^{*c*}Scaled from $\Gamma(\eta_c \rightarrow gg)$. ^{*d*}Computed using Eqn. (3.5) of Ref. [20].

^eComputed using Eqn. (3).

^fComputed using Eqn. (2).

^gFrom rates compiled in Table X of Ref. [20].

TABLE III: Calculated and observed rates for radiative tran	1-
sitions among charmonium levels in the potential (1).	

	γ energy	Partial wi	idth (keV)
Transition	$k ({\rm MeV})$	Computed	$Measured^a$
$\psi \xrightarrow{\mathrm{M1}} \eta_c \gamma$	115	1.92	$1.13 {\pm} 0.41$
$\chi_{c0} \xrightarrow{\mathrm{E1}} J/\psi\gamma$	303	$120 \ (105)^b$	$98{\pm}43$
$\chi_{c1} \xrightarrow{\mathrm{E1}} J/\psi\gamma$	390	$242 \ (215)^b$	$240{\pm}51$
$\chi_{c2} \xrightarrow{\mathrm{E1}} J/\psi\gamma$	429	$315 \ (289)^b$	$270 {\pm} 46$
$h_c \xrightarrow{\mathrm{E1}} \eta_c \gamma$	504	482	
$\eta_c' \xrightarrow{\mathrm{E1}} h_c \gamma$	126	51	
$\psi' \xrightarrow{\mathrm{E1}} \chi_{c2}\gamma$	128	$29 \ (25)^b$	22 ± 5
$\psi' \xrightarrow{\mathrm{E1}} \chi_{c1} \gamma$	171	$41 (31)^b$	24 ± 5
$\psi' \xrightarrow{\mathrm{E1}} \chi_{c0} \gamma$	261	$46 (38)^b$	26 ± 5
$\psi' \xrightarrow{\mathrm{M1}} \eta'_c \gamma$	32	0.04	
$\psi' \xrightarrow{\mathrm{M1}} \eta_c \gamma$	638	0.91	$0.75{\pm}0.25$
$\psi(3770) \xrightarrow{\mathrm{E1}} \chi_{c2}\gamma$	208	3.7	
$\psi(3770) \xrightarrow{\mathrm{E1}} \chi_{c1}\gamma$	250	94	
$\psi(3770) \xrightarrow{\mathrm{E1}} \chi_{c0}\gamma$	338	287	
$\eta_{c2} \xrightarrow{\mathrm{E1}} \psi(3770)\gamma$	45	0.34	
$\eta_{c2} \xrightarrow{\mathrm{E1}} h_c \gamma$	278	303	
$\psi_2 \xrightarrow{\mathrm{E1}} \chi_{c2} \gamma$	250	56	
$\psi_2 \stackrel{\text{E1}}{\longrightarrow} \chi_{c1} \gamma$	292	260	

^aDerived from Ref. [22].

^bCorrected for coupling to decay channels as in Ref. [16].

ELQ 2002

Channel	Threshold Energy (MeV)
$D^0 ar{D}^0$	3729.4
D^+D^-	3738.8
$D^0 \bar{D}^{*0}$ or $D^{*0} \bar{D}^0$	3871.5
$ ho^0 J/\psi$	3872.7
$D^{\pm}D^{*\mp}$	3879.5
$\omega^0 J/\psi$	3879.6
$D_s^+ D_s^-$	3936.2
$D^{*0} ar{D}^{*0}$	4013.6
$D^{*+}D^{*-}$	4020.2
$\eta' J\!/\!\psi$	4054.7
$f^0 J\!/\!\psi$	≈ 4077
$D_{s}^{+}\bar{D}_{s}^{*-}$ or $D_{s}^{*+}\bar{D}_{s}^{-}$	4080.0
$a^0 J\!/\!\psi$	4081.6
$arphi^0 J\!/\!\psi$	4116.4
$D_s^{*+}D_s^{*-}$	4223.8

TABLE I: Thresholds for decay into open charm and nearby hidden-charm thresholds.

Including Light Quark Effects

 $[\mathcal{H}_0 + \mathcal{H}_2 + \mathcal{H}_I]\psi = \omega\psi$

Lattice QCD

Coupling to open-charm channels

Phenomenological approach:

$$\mathcal{H}_{I} = \frac{3}{8} \sum_{a} \int :\rho_{a}(\mathbf{r}) V(\mathbf{r} - \mathbf{r}') \rho_{a}(\mathbf{r}') : d^{3}r \, d^{3}r'$$
$$\rho^{a} = \bar{c}\gamma^{0} t^{a} c + \bar{q}\gamma^{0} t^{a} q$$

Calculate pair-creation amplitudes,

Evaluate
$$<^{3} D_{2} |\mathcal{H}_{I}| D\bar{D}^{\star} >$$
, etc.

Solve coupled-state system

 $\begin{aligned} \psi &= \psi_0 + \psi_2 \\ \bar{c}c & \bar{D}D \end{aligned} \quad \begin{array}{c} \text{solve} \\ \text{solve} \\ \bar{c}c & \bar{D}D \end{aligned} \quad \begin{array}{c} \mathcal{H}_0 + \mathcal{H}_I^{\dagger} \frac{1}{\omega - \mathcal{H}_2 + i\epsilon} \mathcal{H}_I \end{bmatrix} \psi_0 &= \omega \psi_0 \\ \text{for } \omega \text{ and } \psi_0 \end{aligned}$

Effects on the spectrum

Coupling to virtual channels induces spin-dependent forces in charmonium near threshold, because $M(D^*) > M(D)$

State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
$\frac{1^1\mathrm{S}_0}{1^3\mathrm{S}_1}$	$2979.9^a\ 3096.9^a$	3067.6^{b}	$-90.5^{e} + 30.2^{e}$	$+2.8 \\ -0.9$
$1^{3}P_{0}$ $1^{3}P_{1}$ $1^{1}P_{1}$ $1^{3}P_{2}$	$egin{array}{c} 3415.3^a\ 3510.5^a\ 3524.4^f\ 3556.2^a \end{array}$	3 525.3 ^c	-114.9^{e} -11.6^{e} $+0.6^{e}$ $+31.9^{e}$	$+5.9 \\ -2.0 \\ +0.5 \\ -0.3$
$\begin{array}{c} 2^1S_0\\ 2^3S_1 \end{array}$	${3638}^a \ {3686.0}^a$	3674^{b}	$-50.1^{e} + 16.7^{e}$	$+15.7 \\ -5.2$
$1^{3}D_{1}$ $1^{3}D_{2}$ $1^{1}D_{2}$ $1^{3}D_{3}$	$3769.9^a\ 3830.6\ 3838.0\ 3868.3$	$(3815)^d$	$-40 \\ 0 \\ 0 \\ +20$	$-39.9 \\ -2.7 \\ +4.2 \\ +19.0$
$2^{3}P_{0}$ $2^{3}P_{1}$ $2^{1}P_{1}$ $2^{3}P_{2}$	3 881.4 3 920.5 3 919.0 3 931g	$(3922)^d$	$-90 \\ -8 \\ 0 \\ +25$	+27.9 +6.7 -5.4 -9.6
$\frac{3^1\mathrm{S}_0}{3^3\mathrm{S}_1}$	${3943^h}\over{4040^a}$	$(4015)^i$	$-66^e + 22^e$	-3.1 + 1.0

 \Rightarrow

 \Rightarrow

 \Rightarrow

Mass shifts:

 $M(\eta_c') = 3637.7 \pm 4.4$

Hyperfine splitting: Normalize to ightarrowObserved Shift

 $M(\psi') - M(\eta'_c) = 32\pi\alpha_s |\Psi(0)|^2 / 9m_c^2$ $M(J/\psi) - M(\eta_c) = 117 \text{ MeV}$ $M(\psi') - M(\eta'_c) = 67 \text{ MeV}$ $(48.3 \pm 4.4) \text{ MeV}$ $20.9 \text{MeV} \implies \text{Agrees}$

Radiative Transitions

$1^{3}D_{1}(3770) \rightarrow $ model experiment ^{<i>a</i>}	$\chi_{c2} \gamma(208) \ 3.9 \ < 20$	$\begin{array}{c} \chi_{c1} \gamma(251) \\ 59 \\ 78 \pm 20 \end{array}$	$rac{\chi_{c0}\gamma(338)}{225}$
$1^{3}D_{2}(3831) \rightarrow model$	$\begin{array}{c}\chi_{c2}\gamma(266)\\45\end{array}$	$\begin{array}{c} \chi_{c1} \gamma(308) \\ 212 \end{array}$	
$1^{3}D_{3}(3868) \rightarrow model$	$\begin{array}{c} \chi_{c2} \gamma(303) \\ 286 \end{array}$		

Decays into open charm

Decay widths:

 $\psi''(3770)$ width agrees with experiment

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell = L - 1$ and $\ell = L + 1$.

State	$Dar{D}$	$D\bar{D}^*$	$D^* \bar{D}^*$
$^{1}\mathrm{S}_{0}$	-: 0	-: 2	-: 2
$^{3}\mathrm{S}_{1}$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$
$^{3}\mathrm{P}_{\mathrm{0}}$	1:0	0:0	$\frac{1}{3}:\frac{8}{3}$
$^{3}P_{1}$	0:0	$\frac{4}{3}:\frac{2}{3}$	0:2
$^{1}\mathrm{P}_{1}$	0:0	$\frac{2}{3}:\frac{4}{3}$	$\frac{2}{3}:\frac{4}{3}$
$^{3}P_{2}$	$0:\frac{2}{5}$	$0:\frac{6}{5}$	$\frac{4}{3}:\frac{16}{15}$
$^{3}\mathrm{D}_{1}$	$\frac{2}{3}:0$	$\frac{2}{3}:0$	$\frac{4}{15}:\frac{12}{5}$
$^{3}\mathrm{D}_{2}$	0:0	$\frac{6}{5}:\frac{4}{5}$	$\frac{2}{5}:\frac{8}{5}$
$^{1}\mathrm{D}_{2}$	0:0	$\frac{4}{5}:\frac{6}{5}$	$\frac{4}{5}:\frac{6}{5}$
$^{3}\mathrm{D}_{3}$	$0:\frac{3}{7}$	$0:\frac{8}{7}$	$\frac{8}{5}:\frac{29}{35}$
${}^{3}\mathrm{F}_{2}$	$\frac{3}{5}:0$	$\frac{4}{5}$: 0	$\frac{11}{35}:\frac{16}{7}$
${}^{3}\mathrm{F}_{3}$	0:0	$\frac{8}{7}:\frac{6}{7}$	$\frac{4}{7}:\frac{10}{7}$
$^{1}\mathrm{F}_{3}$	0:0	$\frac{6}{7}:\frac{8}{7}$	$\frac{6}{7}:\frac{8}{7}$
${}^{3}\mathrm{F}_{4}$	$0:\frac{4}{9}$	$0:\frac{10}{9}$	$\frac{12}{7}:\frac{46}{63}$
${}^{3}\mathrm{G}_{3}$	$\frac{4}{7}$: 0	$\frac{6}{7}$: 0	$\frac{22}{63}:\frac{20}{9}$
${}^{3}\mathrm{G}_{4}$	0:0	$\frac{10}{9}:\frac{8}{9}$	$\frac{2}{3}:\frac{4}{3}$
$^{1}\mathrm{G}_{4}$	0:0	$\frac{8}{9}:\frac{10}{9}$	$\frac{8}{9}:\frac{10}{9}$
${}^{3}G_{5}$	$0:\frac{5}{11}$	$0: \frac{12}{11}$	$\frac{16}{9}:\frac{67}{99}$

 $^{3}D_{3}$ decay width small

Search for DD final states

Belle [hep-ex/0507019]

BaBar ?

Coupled Channels Results

 $\Gamma \approx 50 \text{ MeV}$

3S Spin Splitting increased

Requires bare splitting: 88 Mev

To do:

Extract $3^{3}S_{1}$ pole from CCC model of ΔR .

22

Including DD_P channels: Expected to add significant spin splitting

2P States

Belle observes the Z(3931) in YY production

Mass = $3931 \pm 4(stat) \pm 2(sys)$ MeV Width = $20 \pm 8(stat) \pm 3(sys)$ MeV

Decay mode DD

Good agreement with expectations Likely X[']c2

FIG. 3: The sum of the $M(D\bar{D})$ invariant mass distributions for all four processes. The curves show the fits with (solid) and without (dashed) a resonance component. The histograms show the distribution of the events from the *D*-mass sidebands (see the text).

Decay Widths

TABLE V: Open-charm strong decay modes of the charmonium states near threshold. The theoretical widths using the C^3 model [8] are shown.

State	$n^{2s+1}L_J$	Mode	Decay Width (1	MeV)
			Experiment	Computed
$\psi(3770)$	1^3D_1	$\begin{array}{c} D^0 \bar{D}^0 \\ D^+ D^- \\ \text{total} \end{array}$	23.6 ± 2.7^{b}	11.8 8.3 20.1
$\psi(3868)$	1^3D_3	$D\bar{D}$ total	23.0 ± 2.1	0.82 0.82
$\chi_{c0}'(3881)$	$2^3 P_0$	$D\bar{D}$ total		$\begin{array}{c} 61.5\\ 61.5\end{array}$
$h_{c1}'(3919)$	$2^1 P_1$	$D\bar{D}^*$ total		$59.8 \\ 59.8$
$\chi_{c1}'(3920)$	$2^{3}P_{1}$	$D\bar{D}^*$ total		$\begin{array}{c} 81.0\\ 81.0\end{array}$
$\chi_{c2}'(3931)$	$2^3 P_2$	$Dar{D}$ $Dar{D}^*$ total	$20 \pm 8(\text{stat}) \pm 3(\text{sys})^d$	$21.5 \\ 7.1 \\ 28.6$
$\eta_{c}^{\prime\prime}(3943)$	3^1S_0	$D\bar{D}^*$ total	$< 52^{e}$	$\begin{array}{c} 49.8\\ 49.8\end{array}$
$\psi(4040)$	3^3S_1	$D\bar{D}$ $D\bar{D}^*$ $D_s\bar{D}_s$ $D^*\bar{D}^*$		0.1 33. 8. 33.
		total	$\left\{\begin{array}{c} 52 \pm 10^b\\ 88 \pm 5^c \end{array}\right\}$	74.

2P J=0,1 states wide J=2 state narrow

X(3872), Y(3940), Y(4260)

Charmonium or Not?

Including light quark effects seems to blur the distinction between charmonium and (molecules or hybrids).

Not true for narrow states near thresholds.

A molecular or hybrid state exists only if an addition narrow state is seen in a given channel.

Purely counting states.

Levinson's theorem Schwinger

X(3872)

Belle

Phys.Rev.Lett.91:262001,2003

FIG. 2: Signal-band projections of (a) M_{bc} , (b) $M_{\pi^+\pi^- J/\psi}$ and (c) ΔE for the $X(3872) \rightarrow \pi^+\pi^- J/\psi$ signal region with the results of the unbinned fit superimposed.

CDF

Phys. Rev. Lett. 93, 162002 (2004)

BaBar

 $m_X = 3873.4 \pm 1.4 \text{ MeV/c}^2$ BR(B⁻->X(3872)K⁻) × BR(X->J/ $\Psi\pi\pi$) = = (1.28 ± 0.41) × 10⁻⁵

Cross-check separating $J/\Psi \rightarrow ee$, $\mu\mu$

ee : BR = $(1.94 \pm 0.62) \times 10^{-5}$ $\mu\mu$: BR = $(0.52 \pm 0.46) \times 10^{-5}$

What we know about X(3872)

Mass:	Experiment	Sample	Events	Mass (MeV)
	Belle	152M $\Upsilon(4S) \to B\bar{B}$	35.7 ± 6.8	3872.0 ± 0.8
	CDF	$220~{\rm pb}^{-1}$	730 ± 90	3871.4 ± 0.8
	DØ	230 pb^{-1}	522 ± 100	3871.8 ± 4.3
	BaBar	117M $\Upsilon(4S) \to B\bar{B}$	25.4 ± 8.7	3873.4 ± 1.4
		Average		3871.9 ± 0.6

3871.9 ± 0.6 MeV DD* (3871.3 ± 1.0 MeV) thresholds: (3878.6 ± 1.0 MeV) higher than expected in models (3815 MeV) Width: < 2.3 MeV Belle

Decay: $X(3872) \Rightarrow \pi \pi + J/\psi$ Only seen in discovery mode All other channels limits only Perhaps a sighting ? $X(3872) \Rightarrow "\omega" + J/\psi$ Offshell – needs confirmation **Production:** Belle and BaBar - Produced in B decays. CDF and DO – Significant prompt production. Expect Charmonium D wave state, BUT: Charmonium issues for 1D state: CCCM Mass Splitting from $\Psi''(3770)$ too large. ok Radiative transition rates too small. problem reduced Aspen Winter Conference, "Particle Physics on the Verge of Discovery" Feb. 12–18, 2006 E. Eichten – Fermilab

32

Belle X(3872) \Rightarrow '\u03c6' + J/\u03c6

FIG. 8: (a) The M_{bc} and (b) ΔE distributions for candidate $B \to K \pi^+ \pi^- \pi^0 J/\psi$ decays with $M(\pi^+ \pi^- \pi^0) > 0.75$ GeV. The curves are the result of the fit described in the text.

 10.0 ± 3.6 events and S/B = 5

$$\frac{\Gamma(X \to \omega J/\psi)}{\Gamma(X \to \pi^+ \pi^- J/\psi)} = 0.8 \pm 0.3 \text{(stat)} \pm 0.1 \text{(syst)}$$

Belle

Large two pion transition rate ?

CDF Public Note Jpdate in hep-ex/0512074

Large Isospin breaking ?Measure $\frac{X(3872) \rightarrow \pi^0 \pi^0 J/\psi}{X(3872) \rightarrow \pi^+ \pi^- J/\psi}$

Maybe not Suzul

In the last few months Belle $X(3872) \Rightarrow \gamma + J/\psi \Rightarrow C = +1$ hep-ex/0505037

FIG. 2: The signal yields from fits to the $M_{\rm bc}$ and ΔE distributions in bins of M(3872). The curves are results of fits described in the text.

 $\Gamma(X \to \gamma J/\psi)/\Gamma(X \to \pi^+ \pi^- J/\psi) = 0.14 \pm 0.05.$

J^{PC} = 1⁺⁺ Strongly favored

Belle hep-ex/0505038

Is the X(3872) the $2^{3}P_{1}$ charmonium state ?

Mass too low:

Setting the χ'_{c2} to the observed mass and including the coupled channel effects: $M(\chi'_{c1}) = 3920 \text{ MeV}$

Radiative transitions: 50% admixture

of $D^0 \overline{D}^0$ Belle $\Gamma(X \to \gamma J/\psi)/\Gamma(X \to \pi^+ \pi^- J/\psi) = 0.14 \pm 0.05$

Width Problems:

TABLE VI: E1 radiative transition rates. Partial Width (keV)

$2^{3}P_{1}(3872) \rightarrow$	$1^{3}\mathrm{D}_{1}\gamma(101)$	$1^3 \mathrm{D}_2 \gamma(41)$
model	1.05	0.2
$2^{3}\mathrm{P}_{1}(3872) \rightarrow$	$J\!/\!\psi\gamma(698)$	$\psi' \gamma(182)$
model	34.7	21.1

Decay Width to $D^0\overline{D}^{0*}+D^{0*}\overline{D}^{0}$

Including Light Quark Effects

 $[\mathcal{H}_0 + \mathcal{H}_2 + \mathcal{H}_I]\psi = \omega\psi$

The Nature of \mathcal{H}_2

 $\bar{Q}q + \bar{q}Q \rightarrow \bar{Q}q + \bar{q}Q$ dominant at large $\bar{Q}Q$ separation one pion exchange Tornqvist strong for S wave Suzuki General formulation at large scattering length Braaten and Kusunoki mainly at smaller QQ separation $Qq + \bar{q}Q \rightarrow QQ + \bar{q}q$ constituent exchange terms Swanson emphasizes that there are other nearby states $J/\psi + \rho \qquad J/\psi + \omega$

Assignment for X if NOT Charmonium State

Molecular State

S wave: 1⁺⁺ 1⁺⁻ 1^{+-} Ruled out Large couplings near threshold Model independent analysis pion exchange Deuson 1^{++} or 0^{-+} Decay by dissociation Large Isospin Breaking Maybe analogy states near $D^* \overline{D}^*$ thresholds Analogy states in $B\overline{B}$ more deeply bound Other hybrid M > 4200 MeV LQCD Juge, Kuti, Morningstar

Issues for Molecular Interpertation

What is the average $Q \bar{Q}$ separation? Large - Pro: Small binding, two meson states. Con: Long range forces not strong enough < ≈1 fm - Pro: Strong forces **Con:** Complicated state Near degeneracy with threshold is accidental Braaten and Kusunogi require nearby χ'_{c1} Four quark states require just so dynamics.

Key Measurements For X(3872):

 $\frac{X(3872) \rightarrow \gamma J/\psi}{X(3872) \rightarrow \pi^+ \pi^- J/\psi}$

≈ 0.14± 0.05 Belle

 $egin{aligned} X(3872) &
ightarrow \pi^0 \ D^0 ar{D}^0 \ \overline{X}(3872) &
ightarrow \pi^+ \pi^- J/\psi \ X(3872) &
ightarrow \gamma \ D^0 ar{D}^0 \ \overline{X}(3872) &
ightarrow \pi^+ \pi^- J/\psi \end{aligned}$

10

Belle

 $\frac{X(3872) \rightarrow \pi^{0}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} \quad \text{-> Isospin violation}$ $\frac{X(3872) \rightarrow \gamma \psi'}{X(3872) \rightarrow \gamma J/\psi} \quad \approx 0.6 \text{ if } 2^{3}P_{1}$

 \approx

More states

Solution Transformed Science Scien

X(3943) recoiling against J/Ψ --> η_c"
 decays into DD*
 Γ = 50 MeV Exp < 52 MeV Bell

◊ Y(3940) seen in B decays
 decay into ω J/ψ
 Exp Γ = 87 ± 22 ± 26 MeV

• Y(4260) seen in e^+e^- ISR decay into $\pi\pi+J/\Psi$ Exp Γ = 50 to 90 MeV

BaBar

Y(3940)

Mass = $3943 \pm 11 \pm 13$ Mev B decay Belle $\Gamma = 87 \pm 22 \pm 26$ MeV B -> K Y

Decay mode: ωψ

Needs confirmation

Nothing but questions:

Is this related to the other nearby states ? How good is Zweig's rule ? Isgur and Thacker PR D64:094507 (2001) Geiger and Isgur PR D44, 799 (1991) Cancellation fails in the threshold region

Near $D_s D_s$ threshold. So what?

Y(4260)

 $J^{PC} = 1^{--}$

Mass = $4259 \pm 8^{+2}_{-6}$ MeV $\Gamma = 88 \pm 23^{+6}_{-4}$ MeV Small ΔR

ISR production BaBar

 $\Gamma(Y(4260) \to e^+e^-) \cdot \mathcal{B}(Y \to J/\psi\pi^+\pi^-) = 5.5 \pm 1.0^{+0.8}_{-0.7} \text{ eV}.$

Not the 4S - ΔR Not the 2D - Decay modes

Decay Widths

The Y(4260) is something New

Molecular state – S wave thresholds DD_P –– but D_p not narrow

Hybrid -

and Page [hep-ph/0507199] Zhu [hep-ph/0507025] Charmonium Juge, Kuti,Morningstar [nucl-th/0307116]

Expect triplet partners

0			
J^{PC}		Degeneracies	Operator
0^{-+}	S wave	1	$oldsymbol{\chi}^{\dagger} \; (oldsymbol{D}^2)^p \; oldsymbol{\psi}$
1+-	P wave	$0^{++}, 1^{++}, 2^{++}$	$\chi^\dagger~oldsymbol{D}~\psi$
1	H_1 hybrid	$0^{-+}, 1^{-+}, 2^{-+}$	$\chi^{\dagger}~{m B}({m D}^2)^p~\psi$
1^{++}	H_2 hybrid	$0^{+-}, 1^{+-}, 2^{+-}$	$\chi^{\dagger}~m{B}{ imes}m{D}~\psi$
0^{++}	H_3 hybrid	1+-	$\chi^{\dagger} \; {m B} \! \cdot \! {m D} \; \psi$

Quenched Spectrum

$\begin{array}{c} H_{1}' \\ H_{3} \\ H_{2} \\ H_{1} \end{array}$ 4 $r_0 \left[\ E - E_{1S} \right]$ 1Р_{п.} 3 2 2S 1P ⊥ ± 1 0.2 0.3 0 0.1 $a_{s}/(2r_{0})$

How many narrow?

	X, Y, Z `	s Stat	us Table	
Observed	State	JPC	$(\bar{c}c)$	Alternative
Many	X(3872)	1++	χ'_{c1} 🗸	D D* Molecule
Belle	Z (3934)	2++	χ'_{c2}	1
Belle	Y (3940)	JP+	?	?
Belle	X (3943)	0-+	$\eta_c'' \checkmark \checkmark$	
Babar	Y (4260)	1	$2^3D_1 \times$	Hybrid

Summary and Outlook

⊘ Narrow heavy-heavy states:

The $2^{3}P_{2}$ and $3^{1}S_{0}$ charmonium states likely found.

All three remaining low-lying L=2 charmonium states are narrow: $1^3D_2, 1^1D_2, 1^3D_3$

A proper calculation for the masses and decay rates of these states must include the large effects from nearby (real/virtual) open charm decay channels.

Detailed predictions for masses, mixings and decays using the CCCM give sensible results and can be used to guide the identification of other missing charmonium states.

© QCD in all its richness:

The three states: X(3872), Y(3940) and Y(4260) do not fit gracefully in any simple charmonium interpretation.

If X(3872) is a molecular state:
 Possible analogy states in *bb* system
 Possible analogy states near other S-wave thresholds.

If Y(4260) is a hybrid state:
0⁻⁺, 1⁻⁺ and 2⁻⁺ nearby states.

Solution Need lattice calculations of spectrum and properties.

Extra Slides

Wish List For charmonium states: Branching ratios to charm meson pairs: DD,
 DD^* , D^*D^* , D_sD_s , $D_sD_s^*$, $D_s^*D_s^*$ Keep looking for missing 1D states ø For X(3872): D D pi and D D gamma \odot look for radiative transition to Ψ' For Y(4260): Iook at D D pi pi for S-wave + P-wave charmed meson final state. \oslash look for $D_s * D_s *$

Look for more new states

Hybrid Spectrum Lattice QCD

QWG Yellow Report [hep-ph/0412158]

5