Recent Results from HERA

Measurements of Proton Structure at Low Q²

The High Q² regime Neutral and Charged Current Processes

QCD: Partons in the Proton, Jets and $\alpha_{_{\rm S}}$

First Polarised Measurements from HERA

Heavy Quark Structure Functions and Jets

Seaches for new physics
Andrew Mehta

THE UNIVERSITY of LIVERPOOL

Introduction

- HERA is world's first and only ep collider
- Collision energy √s=320 GeV
- Can collide e⁺ or e⁻ with longitudinal polarisation
- Enormous impact on world parton distribution functions
- Tests EW sector of Standard Model
- Charm factory
- Many possible SM extensions show up at HERA

Will only show a personal selection of a few of the hundreds of results. Many important topics skipped altogether

HERA II

- 5 fold lumi increase achieved by focusing magnets and higher beam currents
- Slow start up 2002-03
- Problems with high beam related backgrounds
- Now solved. Best ever HERA performance
- Looking forward to 2006-07 run

HERA collides e and p

Study strong, electromagnetic & weak forces through Deep Inelastic Scattering

At fixed $\int s$: two kinematic variables:

$$x \& Q^{2}$$

$$Q^{2} = s \times y$$

 Q^2 = "resolving power" of probe High Q^2 : resolve $1/1000^{th}$ size of proton

x = momentum fraction of proton carried by quark HERA: ~10⁻⁶ - 1

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} \approx \frac{e^{4}}{8\pi x} \left[\frac{1}{Q^{2}}\right]^{2} \left[Y_{+}\widetilde{F}_{2} \mp Y_{-}x\widetilde{F}_{3} - y^{2}\widetilde{F}_{L}\right]$$

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} \approx \frac{g^{4}}{64\pi x} \left[\frac{1}{M_{W}^{2} + Q^{2}} \right]^{2} \left[Y_{+} \widetilde{W}_{2}^{\pm} \mp Y_{-} x \widetilde{W}_{3}^{\pm} - y^{2} \widetilde{W}_{L}^{\pm} \right] \qquad Y_{\pm} = 1 \pm (1 - y)^{2}$$

Modified at high Q² by Z propagator

$$Y_{\pm} = 1 \pm (1 - y)^2$$

$$\widetilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$$

 $\widetilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$ Dominant Contribution

$$x\widetilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$$

 $x\widetilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$ Contributes when $Q^2 \simeq M_{\overline{q}}^2$

$$\widetilde{F}_L \propto \alpha_s \cdot xg(x, Q^2)$$

 $\widetilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$ Contributes only at high y

similarly for W_2^{\pm} , xW_3^{\pm} and W_L^{\pm}

$$\widetilde{\sigma}_{NC} = \frac{Q^2 x}{2\alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma}{dx dQ^2}$$

$$\widetilde{\sigma} = \widetilde{F}_2$$
 when $\widetilde{F}_L \equiv x\widetilde{F}_3 \equiv 0$

Kinematic Range

Conventional QCD evolution only tells us Q² dependence

x dependence must come from data

Method:

Measure cross sections

Fit data - extract x dep. of partons

HERA PDFs extrapolate into LHC region

LHC probes proton structure where gluon dominates (gluon collider)

HERA data crucial in calculations of new physics & measurements at LHC

F₂ dominates cross-section

Range in x: 0.00001 - 1

Range in $Q^2 \sim 1 - 30000 \text{ GeV}^2$

Measured with ~2-3% precision

Directly sensitive to sum of all quarks and anti-quarks

Indirectly sensitive to gluons via QCD radiation - scaling violations

At high Q2 NC cross sections for e⁺ and e⁻ deviate

$$\widetilde{\sigma}_{NC}^{\pm} \sim \widetilde{F}_2 \mp \frac{Y_-}{Y_+} x \widetilde{F}_3$$

Subtract NC positron from electron cross section

HERA confirm valence quark structure

Errors dominated by stat. error of e-sample 0.2

HERA II e- run 2005-06 x10 in stats

Much better precision

X

တ္ထ

Charged current process provides sensitivity to quark flavour

Cross sections small due to to large W mass in propagator

At high x (low y) lepton charge separates u from d

$$\sigma_{cc}^+ \approx x \left| \overline{u} + \overline{c} + (1 - y)^2 (d + s) \right|^{-1}$$

$$\sigma_{cc}^- \approx x \left[u + c + (1 - y)^2 (\overline{d} + \overline{s}) \right]^{-1}$$

- Cross sections measured over 3 orders of magnitude in Q²
- CC cross section supressed at low Q² by W propagator
- At high Q^2 NC+CC cross sections comparable
- electroweak unification

Extraction of light quark couplings to Z

- •Take NC+CC cross sections and fit with extra parameters
- H1 data competetive with world's best
- *Standard Model looks in good shape so far

Jet Cross Sections

Jet Cross Sections

- Many different measurements in DIS+photoproduction
- Precision of few % achieved over much of phase space
- Good agreement with NLO QCD
- Used to measure α_s from jets alone or in a QCD fit \Rightarrow

NLO QCD Fits

PDFs parameterised at starting scale Q_0^2 and use DGLAP to evolve to higher Q^2

parameters A,b,c,d,e,f optimised in fit for each PDF

some parameters constrained by sum rules e.g. momentum sum = 1

$$\int u_{v} dx = 2$$

$$\int d_{v} dx = 1$$

HERA PDFs

- ZEUS also use jets to extract PDFs w/o external input
- H1/ZEUS broadly agree but some difference at medium x
- Reasonable agreement with MRSTglobal fit
- Errors still large on d and g at high x

α_s from NLO QCD fits to DIS inclusive and jet data

H1:
$$0.1150 \pm 0.0017$$
(exp) ± 0.0008 (model) ± 0.005 (scale)

ZEUS: 0.1166 ± 0.0008 (unc) ± 0.0032 (corr) ± 0.0036 (norm) ± 0.0018 (model) ± 0.004 (scale)

- Experimental errors competitive with world average
- Largest error from renormalisation scale uncertainty (changed by factor 4 H1, 2 ZEUS)
- NNLO analysis should reduce the scale uncertainty by factor 2-4

- Electron beam naturally transversely polarised
- Spin Rotators at IP give longitudinal polarisation
- Polarimeters provide independent polarisation measurements

No RH charged currents in SM. Expect a linear dependence

- First Measurement of helicity dependence of $ep \rightarrow v X$
- Expect a linear dependence from SM
- ZEUS+H1 measurements in agreement + with SM

Deviation from straight line means new physics independent of all SM parameters!

Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

Method 1: D^*

- ullet Access charm by $c\! o\!D^{*\pm}\! o\!K^{\pm}\pi^{\pm}\pi^{\mp}$
- Correct for branching fractions and unseen phase space (low P_T of D^*)
- •Only used for $F_2^{c\,\overline{c}}$

- •Use S=DCA/ σ (DCA) of track to vertex
- Make use of silicon tracker
- •Minimal extrapolation needed to extract $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

 $F_{\,2}^{\it c\, \bar{c}}$ from D* and displaced track methods

Measured over wide kinematic range

Good agreement H1/ZEUS

Good agreement both methods

Good agreement with SM

 $F_2^{bar{b}}$ from displaced tracks only

- ullet First mesurement of F_2^{bb}
- Good agreement with SM
- no evidence for excess
- Agreement also good with different QCD models (massive/massless/ VFNS) + PDFs

Large difference CTEQ+MRST at low Q²

c+b jets in photoproduction +DIS

• Charm jets good agreedment with SM

- Many measurements of b
 production in DIS +photoproduction
- In DIS data ok within differences in QCD parameterisations
- Excess seen in γp .

Pentaquarks?

Observations by one experiment not confirmed by other

- Many searches performed for SUSY R parity violating models
- HERA has world's best limits in large areas of phase space

H1Events with Isolated e or μ and missing $P_{_{\rm T}}$

Excess of events seen in e^+p HERA I and HERA II data for H1 Events at high hadronic P_T No excess seen in ZEUS HERA I or H1 e^-p

Await ZEUS HERA II and 2006-2007 data to see if new physics

Summary

Inclusive mesurements from HERA great add to our understanding of proton structure Essential for LHC physics

- Parton distribution functions have errors of a few % over most of the x range
- First measurements of polarised CC cross section consistent with a linear dependence as in SM
- Semi-inclusive charm and bottom show we have a good understanding of QCD and the PDFs
- Many searches underway looking for physics beyond the Standard Model