We describe an algorithm for the tensor reduction of massless crossed box, with light-like external legs, and the connection of tensors integrals to scalar ones, with arbitrary powers of the propagators in higher dimensions. We derive recurrence relations from integration-by-parts and Lorentz-invariance identities, that allow us to write the scalar integrals as a combination of two master crossed boxes, plus simpler topology diagrams. We derive the system of differential equations that the two master integrals satisfy, and we use one of these equations to express the second master integral as a function of the first one, already known in the literature.