
NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

1 ACAT 2000, Fermilab Oct 19 2000 Control States...

Control States
for the Atlas Software Framework

Paolo Calafiura , LBL

ACAT 2000

Fermi Lab, October 19 2000

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

2 ACAT 2000, Fermilab Oct 19 2000 Control States...

The Atlas Software Architecture

➢ Overal l design principles specif ied Dec 99 by the

Architecture Task Force

– data and algorithm object separation

– proxy data access using a “Transient Data Store”

– no direct module-to-module communication

– traditional control flow

– technology-independent database access layer

➢ Athena Framework prototype implementation

– based on the existing Gaudi architecture effort (initiated by
LHCb)

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

3 ACAT 2000, Fermilab Oct 19 2000 Control States...

Control Framework

The control framework is the part of an infrastructure

that makes sure that

– The right piece of software

– Runs

– At the right time

– With the right inputs and

– The outputs go to the right place

 (Lassi Tuura)

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

4 ACAT 2000, Fermilab Oct 19 2000 Control States...

GAUDI Architecture

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm
Transient

Event Store

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager ConverterConverter

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

5 ACAT 2000, Fermilab Oct 19 2000 Control States...

Definitions

➢ Algorithm (Module)
– Atomic uni t (v is ib le & control led by f ramework) of calculat ion and/or processing.

➢ ApplicationMgr
– creates and ini t ia l izes Services and Algos . Dr ives the Algor i thms processing

➢ Data Object (Collection)

– Atomic uni t (v is ib le & managed by t rans ient data s tore) of data. NOT necessar i ly a dumb data object .

➢ Transient Event (Data) Store

– Central service and repository for data objects. Provides data locat ion, data object l i fe cycle

management , t ransparent smart po inter /data conver ter in teract ion.

– Also Transient Histogram & Detector Stores

➢ Data Converter

– Provides expl ic i t (some impl ic i t soon) convers ion f rom “arbi t rary” pers istent data format (ie. ZEBRA,

Object iv i ty, etc.) to t ransient data object.

➢ Services

– Global ly avai lab le sof tware components prov id ing f ramework funct ional i ty .

➢ Properties

– Contro l and data parameters for Algor i thms and Serv ices.

➢ Job Options File
– Text f i le def in ing conf igurat ion and propert ies.

 (from Craig Tull’s Gaudi Tutorial Introduction)

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

6 ACAT 2000, Fermilab Oct 19 2000 Control States...

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

7 ACAT 2000, Fermilab Oct 19 2000 Control States...

The Application Manager

AppMgr

•Input

•Algorithms

•State Methods

HitFinder Tracker

Initialize Execute Finalize Initialize Execute Finalize

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

8 ACAT 2000, Fermilab Oct 19 2000 Control States...

What’s missing?

➢ For most use cases, nothing really...

➢ Use cases not easi ly covered by this approach

– Event filtering: I/O modules must handle disk file open/close
actions

– Calibration: must handle stepping of input signal

– Simulation: pile-up of events coming from multiple streams

➢ Don’t want to require each algorithm to handle a “f i le

opened” act ion

➢ Too much coupl ing among Algos and the

ApplicationMgr:

– each and every algo must implement exacty three transitions:
initialize, execute and finalize

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

9 ACAT 2000, Fermilab Oct 19 2000 Control States...

What else do we need?

➢ Separate control from access to core services

➢ Support mult iple event sources (e.g. for pi le-up studies)

➢ Notify modules only about the transitions they may be

interested into

– Notification must be type-safe: only modules implementing the
“right” state transition interface can be notified.

➢ Control the order in which the modules handle act ions

➢ Define the states, the order of modules and the state

sources, dynamically via the User Interface

➢ No physical coupling between Applicat ionMgr and

modules:

– states can be added or removed without triggering massive
recompilations

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

10 ACAT 2000, Fermilab Oct 19 2000 Control States...

The Control States Framework

Init NewRecord Finalize

•Sources

•States

•Modules

•State Methods

HitFinder Tracker

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

11 ACAT 2000, Fermilab Oct 19 2000 Control States...

The Core Classes

➢ State Source

– drive the framework generating actions

➢ State (and Concrete States)

– observe sources for matching actions, run module methods

➢ Modules

– handle state transitions,
adding matching state methods to their queues

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

12 ACAT 2000, Fermilab Oct 19 2000 Control States...

Implementation

➢ As usual we added a level of indirection (actually two):

– each source is an Observable generating actions (=states)

– each state is a typed Observable that notifies its registered
modules when it observes the corresponding action
(in a sense each state is a separate control framework)

➢ A Module implements a separate interface for each

action he can handle

➢ I t looks very much l ike the Typed Message/Mult iCast

pattern (J. Vlissides, “Pattern Hatching”, great book)

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

13 ACAT 2000, Fermilab Oct 19 2000 Control States...

Scenario: Running a State

➢ The source notifies all registered states that he has a newRecord

action StateSource::notify DEBUG: notifying newRecord

➢ newRecord state catches the action and notifies its observers, the
managers
State::update DEBUG: newRecord[instanceof NewRecordState] got
message newRecord

➢ Each manager add the matching method to the state queue

➢ Now newRecord runs the scheduled methods
State::run DEBUG: newRecord[instanceof NewRecordState] starts
Hitfinder::newRecord DEBUG: running
State::run WARNING:
newRecord[instanceofHitFinder::__newRecord] was not ready and
had to be rescheduled
Histogrammer::newRecord DEBUG: running
Hitfinder::newRecord DEBUG: running

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

14 ACAT 2000, Fermilab Oct 19 2000 Control States...

Where do we stand?

➢ We have a web page
http://electra.lbl.gov/ATLAS/framework/controlstates/actiondesign.html

➢ We have a prototype

– Integrated in Atlas SRT
• can get a stand alone version from URL above

– Integration with the ApplicationMgr (being rewritten) in progress

➢ Use it to explore interactions with other new domains

– Scripting/User Interface

– Event Data Model (next talk, VLSC305)

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

15 ACAT 2000, Fermilab Oct 19 2000 Control States...

Thanks to

➢ So many people that I ’ l l sure forget some:

– Vincenzo Innocente

– Jim Kowalkowski

– Charles Leggett

– Pere Mato

– John Milford

– Dave Quarrie

– Marjorie Shapiro

– Lassi Tuura

– Craig Tull

– Laurent Vacavant

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

16 ACAT 2000, Fermilab Oct 19 2000 Control States...

Lassi’s Object Networks

➢ Colors = data

types

➢ Modules =

behavior

➢ Whole

network =

component

➢ Input-output

dependency

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

17 ACAT 2000, Fermilab Oct 19 2000 Control States...

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

18 ACAT 2000, Fermilab Oct 19 2000 Control States...

The Module class

➢ Define a Module class that provides access to the core

services:
class Module :
 virtual public IModule,
 virtual public IProperty,
 virtual public TEventHandler<SysInitialize>
{
 public:

 IMessageSvc* msgSvc();

 template< class T>
 StatusCode service(const std::string& name, T*& svc);
 …
}

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

19 ACAT 2000, Fermilab Oct 19 2000 Control States...

Setting up - a sample script

➢ associate States and StateSources

 StateSource rawFile(inputFile)
 next_Record.attach(rawFile)

➢ define Sequences of components to be executed

 sequence all =
 { "hitFinder", "tracker", "myanal" }
 sequence reco = { "tracker", "myanal"}

➢ define State transitions, with usual f low-control

constructs

 next_run.run("all")
 while (next_Record.run("all")) {
 fill_histos.run("reco")
 fill_Bhistos.run("paolo")
 }

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

20 ACAT 2000, Fermilab Oct 19 2000 Control States...

Running

➢ The framework runs States following the script order.

➢ Control returns to the framework after each state

completes

➢ The State tr ies to run each registered module in order

➢ The module determines the status of i ts associated

method, run it if ready, and report to the State .

➢ The Object Network (or a Data Manager) notifies

modules when their Parameters are ready or change.

➢ The State may re-queue a module which is NotReady.

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

21 ACAT 2000, Fermilab Oct 19 2000 Control States...

Scenario: Running a State

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

22 ACAT 2000, Fermilab Oct 19 2000 Control States...

Scenario: Setting Up

➢ First we define the state classes
DEFINE_CTRL_STATE(NewJobStateS)
DEFINE_CTRL_STATE(NewRunState)
DEFINE_CTRL_STATE(NewRecordState)

➢ Then we create the module managers
HitFinderMgr hitFinder;
HistogrammerMgr myHistos;

➢ We create the states instances and we register the module with

them. NewJobState newJob("newJob");
newJob.addIObserver(&myHistos);
newJob.addIObserver(&hitFinder);

➢ Finally we create the state source and register the states with it.
StateSource testSource("testSource");
testSource.addIObserver(&newJob);
testSource.addIObserver(&newRun);
testSource.addIObserver(&newRecord);

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

23 ACAT 2000, Fermilab Oct 19 2000 Control States...

