O’'Mega:
An Optimizing Matrix Element Generator

Thorsten Ol

— TU Darmstadt —
(ohl@hep.tu-darmstadt.de)

ACAT2000, Fermilab, October 2000

Th.'ORl O'Mega ACAT 2000

Contents I

1 Feynman Diagrams, DAGs, and Keystones 2
o Perturbative Complexity o One Particle Off Shell Wave Functions
o Keystones o Symmetric Keystones o Directed Acyclical Graphs

o Algorithm o Ward Identities

Th.'ORl - - O'Mega: - - ACAT 2000

Contents I

1 Feynman Diagrams, DAGs, and Keystones 2
o Perturbative Complexity o One Particle Off Shell Wave Functions
o Keystones o Symmetric Keystones o Directed Acyclical Graphs
o Algorithm o Ward Identities

2 impERentation . 0 el L o T]
o Functional Programming o The DAG Functor o Objective Caml

(a.k.a. O’Caml) o O’'Mega o Architecture

Th.'ORl O'Mega ACAT 2000

Contents I

1 Feynman Diagrams, DAGs, and Keystones 2
o Perturbative Complexity o One Particle Off Shell Wave Functions
o Keystones o Symmetric Keystones o Directed Acyclical Graphs
o Algorithm o Ward Identities
2 impERentation . 0 el L o T]
o Functional Programming o The DAG Functor o Objective Caml
(a.k.a. O’Caml) o O’'Mega o Architecture
SUOBIREIORE. - o e e o T

o First Results o Outlook

Th.'ORl O'Mega ACAT 2000

Feynman Diagrams, PAGsS: ‘and Keystones

1 Feynman Diagrams, DAGSs, and Keystones
Pertiirpative-Samniexity- s mns gt el et kst st e iy
One Pajiticle ORShell Wave Functions. s L DRl [o)
KeystonaSeimer i i e e e i s R s
SYMMEeHITKAYSIOReS |« i it il e s Sl L nRRT] A
Directeégsaeyelical Graphs o i e i i b R s e
AlGOTTERRRE =g s e AR s R e T R R
VVardiisER o g - s i e e R e LR R

2 Implementation T TR R S
FConeEsions |y L e i S e e B N 2

OCo~NOawNDDN -

Th. Ohnl e T O'Mega i i ACAT 2000

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n-5H5)'=2n—-5)- 2n—7):...:3:1

Th.'ORl - - O'Mega: - - ACAT 2000

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n)

4 3

5 15

6 105

7 945

8 10395

9 135135
10 2027025
11 | 34459425
12 | 654729075

Th.'ORl O'Mega ACAT 2000

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n) computational costs grow beyond
4 3 all reasonable limits
5 15
6 105
7 945
8 10395
9 135135
10 2027025
11 | 34459425
12 | 654729075

Th.'ORl O'Mega ACAT2000

| ST,
&7

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n) computational costs grow beyond
4 3 all reasonable limits
5 15 :
6 105 gauge theor_y_ cancellations cause
~ 945 loss of precision
8 10395
9 135135

10 2027025

11 34459425

12 | 654729075

Th.'ORl O'Mega ACAT2000

| G,

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Eln)="(2n =5}l = (2n —5) + (2n — 7)e i3]

n F(n) computational costs grow beyond
4 3 all reasonable limits
5 15 .
6 105 gauge theor_y_ cancellations cause
7 945 loss of precision
g 1\,132?22 Number of independent momenta
10 2027025 P L
11 | 34459425 R oo llilila e
12 | 654729075

Th.'Onl O'Mega ACAT2000

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n) P(n)
4 3 3
5 15 10
6 105 25
7 945 56
8 10395 119
9 135135 246
10 2027025 501
11 34459425 | 1012
12 | 654729075 | 2035

computational costs grow beyond
all reasonable limits

gauge theory cancellations cause
loss of precision

Number of independent momenta

gD

i :Zn—l_ a0
5 TL n

P(n)

Th. Ohnl

O'Mega ACAT2000

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n) P(n) computational costs grow beyond
4 3 Q all reasonable limits
5 15 10 :
6 105 25 gauge theory cancellations cause
7 945 56 loss of precision
g 1%2?22 %ig Number of independent momenta
10 2027025 501 on o i
11 | 34459425 | 1012 Pinje= et 1omn -
12 | 654729075 | 2035

.. Feynman diagrams extremely redundant for many particles in the final state!

Th.'ORl O'Mega ACAT 2000

| Iy,
S

Perturbative Complexity 2

The number of tree Feynman diagrams w/ n legs in vanilla ¢>-theory is

Fm)=2n—-5)!'=2n—-5)- 2n—7):...-3:1

n F(n) P(n) computational costs grow beyond
4 3 Q all reasonable limits
5 15 10 :
6 105 25 gauge theory cancellations cause
7 945 56 loss of precision
g Lflggigg %ig Number of independent momenta
10 2027025 501 on o i
11 | 34459425 | 1012 Pinje= et 1omn -
12 | 654729075 | 2035

.. Feynman diagrams extremely redundant for many particles in the final state!

terms much too large to expect any help from common subexpression
elimination by optimizing compilers that don’t understand any physics!

Th.'ORl O'Mega ACAT2000

One Particle ©ff Shell: Wave Functions 3

One patrticle off-shell wave functions (1POWSs) are obtained from Greensfunctions
by applying the LSZ reduction formula to all but one line:

W(X;pll' coy P9l - /qm) = <d)(q1)/ . ,d)(qm),OUt‘(D(X)’d)(pl), ’ °/d)(pn);in> .

Th.'ORl - - O'Mega: - - ACAT 2000

One Particle ©ff Shell: Wave Functions 3

One patrticle off-shell wave functions (1POWSs) are obtained from Greensfunctions
by applying the LSZ reduction formula to all but one line:

W(X;pll' coy P9l - /qm) = <¢(q1)/ . /d)(qm)/OUt‘(D(X)’d)(pl)/ ’ °/d)(pn);in> .

E.g. (d(qg1), dlga);0ut|@(x)|d(p1);in) in unflavored scalar ¢p>-theory at tree level
X

(O]

P1 di

Th.'ORl O'Mega ACAT 2000

One Particle ©ff Shell: Wave Functions 3

One patrticle off-shell wave functions (1POWSs) are obtained from Greensfunctions
by applying the LSZ reduction formula to all but one line:

W(X'pl,---,Pn;CIL---,qm) = (d(a1),...,dlam);out] @(x}|p(p1),..., d(pn);in) .
E.qg. (d(q) d(qgz); out| ® \cb p1);in) in unflavored scalar cb3-theory at tree level

A N i =

Th.'ORl O'Mega ACAT 2000

One Particle: ©ff. Shell \Wave Functions 3

One patrticle off-shell wave functions (1POWSs) are obtained from Greensfunctions
by applying the LSZ reduction formula to all but one line:

W(X'pl,---,Pn;CIL---,qm) = (d(a1),...,dlam);out] @(x}|p(p1),..., d(pn);in) .
E.qg. (d(q) d(qgz); out| ® \cb p1);in) in unflavored scalar cb3-theory at tree level

A N i =

e the set of all 1POWSs at tree level grows exponentially and can be constructed
recursively from other 1POWs at tree level (the recursion terminates at the
external wave functions).

Th.'Onl O'Mega ACAT2000

One Particle: ©ff. Shell \Wave Functions 3

One patrticle off-shell wave functions (1POWSs) are obtained from Greensfunctions
by applying the LSZ reduction formula to all but one line:

W(X'pl,---,]?n;CIL---,qm) = (d(a1),..., dlam);out] @{x)|d(p1),..., P(pn);in) .
E.qg. (d(q) d(qgz); out| ® \cb p1);in) in unflavored scalar cb3-theory at tree level

A N i =

e the set of all 1POWSs at tree level grows exponentially and can be constructed
recursively from other 1POWs at tree level (the recursion terminates at the
external wave functions).

(rhetorical) question: can we find keystones K with
P}

T=) Di= Y K& (popupm)We (pr)We (p1)We, (pm) + quartic + . ..
1 k,1,m=1

Th.'Onl O'Mega ACAT2000

Lt
[p il A
- 'ﬂ11=

Keystones 4

There are two extreme solutions:
1. one maximally symmetric

2. n maximally asymmetric

The maximally asymmetric solutions are simple: pick any external line j and make
the adjacent vertex a keystone. Equivalently, calculate the 1POW for particle j and
put the amputated line on-shell:

T =W;t (p;)

amp.,on-shell

Th.'ORl O'Mega ACAT2000

Keystones 4

There are two extreme solutions:
1. one maximally symmetric

2. n maximally asymmetric

The maximally asymmetric solutions are simple: pick any external line j and make
the adjacent vertex a keystone. Equivalently, calculate the 1POW for particle j and
put the amputated line on-shell:

T =W;t (p;)

amp.,on-shell

e symbolic equivalent of the numerical Schwinger-Dyson equations of HELAC
(cf. talk by Costas Papadopoulos)

Th.'Onl O'Mega ACAT2000

Keystones 4

There are two extreme solutions:
1. one maximally symmetric

2. n maximally asymmetric

The maximally asymmetric solutions are simple: pick any external line j and make
the adjacent vertex a keystone. Equivalently, calculate the 1POW for particle j and
put the amputated line on-shell:

T =W;t (p;)

amp.,on-shell

e symbolic equivalent of the numerical Schwinger-Dyson equations of HELAC
(cf. talk by Costas Papadopoulos)

empirically, a correct implementation will require a few percent less
multiplications in the amplitude compared to the symmetric solution below

Th.'Onl O'Mega ACAT2000

Keystones 4

There are two extreme solutions:
1. one maximally symmetric

2. n maximally asymmetric

The maximally asymmetric solutions are simple: pick any external line j and make
the adjacent vertex a keystone. Equivalently, calculate the 1POW for particle j and
put the amputated line on-shell:

T =W;t (p;)

amp.,on-shell

e symbolic equivalent of the numerical Schwinger-Dyson equations of HELAC
(cf. talk by Costas Papadopoulos)

empirically, a correct implementation will require a few percent less
multiplications in the amplitude compared to the symmetric solution below

numerical problems have a few more steps to accumulate compared to the
symmetric solution below

Th.'Onl O'Mega ACAT2000

Keystones 4

There are two extreme solutions:
1. one maximally symmetric

2. n maximally asymmetric

The maximally asymmetric solutions are simple: pick any external line j and make
the adjacent vertex a keystone. Equivalently, calculate the 1POW for particle j and
put the amputated line on-shell:

T =W;¢ (p;)

amp.,on-shell

e symbolic equivalent of the numerical Schwinger-Dyson equations of HELAC
(cf. talk by Costas Papadopoulos)

empirically, a correct implementation will require a few percent less
multiplications in the amplitude compared to the symmetric solution below

numerical problems have a few more steps to accumulate compared to the
symmetric solution below

*. more testing with sensitive gauge theory amplitudes required

Th.'Onl O'Mega ACAT2000

Symmetric Keystones 5

The maximally symmetric solutions (corresponding to the numerical approach of
ALPHA) are built from balanced inequivalent partitions of external momenta:

nie Y

Z AT 1) E3 1,12

51 261]1-(1,1,1,1,1)+10(1,1,1,2) +15- (1,2,2)

6 236 | 1-(1,1,1,1,1,1)+15-(1,1,1,1,2) + 40 (1,1,1,3)
L 45 1120 020 (1. 2:3) i 15 D

Th.'ORl O'Mega ACAT 2000

A

Symmetric Keystones 5

The maximally symmetric solutions (corresponding to the numerical approach of
ALPHA) are built from balanced inequivalent partitions of external momenta:

nie Y

Z AT 1) E3 1,12

51 261]1-(1,1,1,1,1)+10(1,1,1,2) +15- (1,2,2)

6 236 | 1-(1,1,1,1,1,1)+15-(1,1,1,1,2) + 40 (1,1,1,3)
L 45 1120 020 (1. 2:3) i 15 D

Subtlety: partitions for an even number of external lines of the type

(Tll, Mo, g i T11—|—T12—|—°"—|—...—|—Tld_1)

are two-fold degenerate

Th.'ORl O'Mega ACAT2000

| G,

Symmetric Keystones 5

The maximally symmetric solutions (corresponding to the numerical approach of
ALPHA) are built from balanced inequivalent partitions of external momenta:

nie Y

Z AT 1) E3 1,12

51 261]1-(1,1,1,1,1)+10(1,1,1,2) +15- (1,2,2)

6 236 | 1-(1,1,1,1,1,1)+15-(1,1,1,1,2) + 40 (1,1,1,3)
L 45 1120 020 (1. 2:3) i 15 D

Subtlety: partitions for an even number of external lines of the type
(Tll, Mot Abd i, —|—T12‘|‘“'—|—...—|—Tld_1)

are two-fold degenerate, e.g. (1,1,1,3) and (1,2, 3) contain the same diagram

*. choose representatives consistently (with a lot of help from Mauro Moretti).

Th.'Onl O'Mega ACAT2000

T

b Tt

L
T

A

Symmetric Keystones 6

F(dmax,) = # of Feynman diagrams with n external legs
In unflavored

max

—a (POt — —¢2 Z
theory. In a partition Ng = {n{,ny, ..., ngf wWithn =ny +n, + - - + ny, there are

1

2 max; nl _l_ 1)
F dmax/N i
(d’) (]- T 6T1d P 1)V £ Koy e ok 1 O AR 1 ‘8 Ndn ‘ H

Feynman diagrams (|S(N)| the size of the symmetric group of N).

Th.'ORl O'Mega ACAT 2000

Symmetric Keystones 6

F(dmax,) = # of Feynman diagrams with n external legs

In unflavored

max

—ama% - —<b2 Z

theory. In a partition Ng = {n{,ny, ..., ngf wWithn =ny +n, + - - + ny, there are

* 1 maX/ nl o 1)
F(dmaX/N ,n))
% (]- T 6Tld 1 1V b 8 5 R i o L T 1 ‘8 Ndn ‘ H

Feynman diagrams (|S(N)| the size of the symmetric group of N). Non trivial
cross-check

F(dmax,n) = Z Z T:(dmaX/N)

d=3 N:{nl,nz,...,nd}
ni+ny+--+ng=n
I<Sm<np<<ng<n/2|

Th.'ORl O'Mega ACAT 2000

A

Symmetric Keystones 6

F(dmax,) = # of Feynman diagrams with n external legs

In unflavored

max

—a LM — —<b2 Z

theory. In a partition Ng = {n{,ny, ..., ngf wWithn =ny +n, + - - + ny, there are

* 1 maX/ nl o 1)
F(dmaX/N ,n))
% (]- T 6Tld 1 1V b 8 5 R i o L T 1 ‘8 Ndn ‘ H

Feynman diagrams (|S(N)| the size of the symmetric group of N). Non trivial
cross-check

F(dmax,n) = Z Z T:(dmaX/N)

d=3 N:{nl,nz,...,nd}
ni+ny+--+ng=n
I<Sm<np<-<ng<[n/2|

has been be checked numerically up to n = 0(100).

Th.'ORl O'Mega ACAT2000

moANETERLEY

H =
e

e
an

dapp it e
)

Ao

b

T e]
4=z rrd
ey

SEnitE st

i
[FiER Fress
s I}

f =
=g e
ey

!

-
A5
R

|
=

'..'..3_‘-."'

; L i
[FitR e

(e
.;.I.‘""'I:“ 1T

o

25

mr
I

i

EhmoiHierniof

Directed Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

Th. Ohnl e T O'Mega i i ACAT 2000

Directed Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

Th. Ohnl il T O'Mega i it ACAT 2000

Directed Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

e partial order “depends on” prohibits cycles

Th. Ohnl il T O'Mega i it ACAT 2000

Directed Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

e partial order “depends on” prohibits cycles
e any tree is equivalent to at least one DAG (itself)

e any DAG is equivalent to only one tree

Th.'ORl - - O'Mega: - - ACAT 2000

Directed:Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

e partial order “depends on” prohibits cycles
e any tree is equivalent to at least one DAG (itself)

e any DAG is equivalent to only one tree

Sets of trees and sets of DAGs can be characterized by the set of possible leaves
and the possible branches

Th.'ORl O'Mega ACAT 2000

Directed:Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

e partial order “depends on” prohibits cycles
e any tree is equivalent to at least one DAG (itself)

e any DAG is equivalent to only one tree

Sets of trees and sets of DAGs can be characterized by the set of possible leaves
and the possible branches

.. there is a functor from the category of trees to the category of DAGS.

Th.'ORl O'Mega ACAT 2000

Directed:Acyclical Graphs 7

Directed Acyclical Graphs (DAGS) are a more efficient representation for arithmetical
expressions than the equivalent trees. E. g.:

e partial order “depends on” prohibits cycles
e any tree is equivalent to at least one DAG (itself)

e any DAG is equivalent to only one tree

Sets of trees and sets of DAGs can be characterized by the set of possible leaves
and the possible branches

.. there is a functor from the category of trees to the category of DAGS.

& modern programming languages allow to make such algebraic relationships
explicit and quickly lead to correct implementations.

Th.'ORl O'Mega ACAT 2000

T

JAlgorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams)

Th.'ORl - - O'Mega: - - ACAT 2000

Algorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams).

Systematic procedure:

Grow : starting from the external particles, build the tower of all 1POWSs
up to a given height (the height is always less than the number of
external lines) and translate it to the equivalent DAG D.

Th.'Onl O'Mega ACAT2000

Algorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams).

Systematic procedure:

Grow : starting from the external particles, build the tower of all 1POWSs
up to a given height (the height is always less than the number of
external lines) and translate it to the equivalent DAG D.

Select: from D, determine all possible flavored keystones for the process
under consideration and the 1POWSs appearing in them.

Th.'Onl O'Mega ACAT2000

Algorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams).

Systematic procedure:

Grow : starting from the external particles, build the tower of all 1POWSs
up to a given height (the height is always less than the number of
external lines) and translate it to the equivalent DAG D.

Select: from D, determine all possible flavored keystones for the process
under consideration and the 1POWSs appearing in them.

Harvest : construct a sub-DAG D* C D consisting only of nodes that
contribute to the 1POWSs appearing in the flavored keystones.

Th.'Onl O'Mega ACAT2000

Algorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams).

Systematic procedure:

Grow : starting from the external particles, build the tower of all 1POWSs
up to a given height (the height is always less than the number of
external lines) and translate it to the equivalent DAG D.

Select: from D, determine all possible flavored keystones for the process
under consideration and the 1POWSs appearing in them.

Harvest : construct a sub-DAG D* C D consisting only of nodes that
contribute to the 1POWSs appearing in the flavored keystones.

Calculate : multiply the 1POWSs as specified by the keystones and sum
the keystones.

Th.'Onl O'Mega ACAT2000

Algorithm 8
By virtue of they recursive construction, tree level 1IPOWSs form a DAG:

.. find the smallest DAG that corresponds to a given tree (i.e. a sum of Feynman
diagrams).

Systematic procedure:

Grow : starting from the external particles, build the tower of all 1POWSs
up to a given height (the height is always less than the number of
external lines) and translate it to the equivalent DAG D.

Select: from D, determine all possible flavored keystones for the process
under consideration and the 1POWSs appearing in them.

Harvest : construct a sub-DAG D* C D consisting only of nodes that
contribute to the 1POWSs appearing in the flavored keystones.

Calculate : multiply the 1POWSs as specified by the keystones and sum
the keystones.

the resulting expression contains no more redundancies!

Th.'Onl O'Mega ACAT2000

Ward:ldentities 9

Even for vector particles, the 1IPOWSs are ‘almost’ physical objects and satisfy simple
Ward Identities in unbroken gauge theories

amp. — 0

0 :
o (out| A (x)]in)

Th.'ORl O'Mega ACAT 2000

| ST,
S

Ward:ldentities 9

Even for vector particles, the 1POWSs are ‘almost’ physical objects and satisfy simple
Ward Identities in unbroken gauge theories

= ()

amp.

0 :
o (out| A (x)]in)

and in spontaneously gauge theories in Rz-gauge

0 ; i
6;(: <OUt‘WH(X)‘|n>amp_ = LEwMmw <OUt‘¢W(X)‘m>amp. ¥

Th.'ORl O'Mega ACAT2000

Ward:ldentities 9

Even for vector particles, the 1POWSs are ‘almost’ physical objects and satisfy simple
Ward Identities in unbroken gauge theories

= ()

amp.

0 :
o (out| A (x)]in)

and in spontaneously gauge theories in Rz-gauge

0 ; i
6;(: <OUt‘WH(X)‘|n>amp_ = LEwMmw <OUt‘¢W(XHm>amp. ¥

code for matrix elements can optionally be instrumented to check these Ward
identities.

Th.'Onl O'Mega ACAT2000

Implementation 10
1 Feynman Diagrams, DAGs, and Keystones 2

2 ImplemeRtation . . i 00 R 11
FunctionaBragramiming - =L Gl st e e seliieeises el i 11
Fe DASSEEREION (oo s s e SRR e, 12
ObjectiveitGaml (a. k. a. O'Gaiml) . io iy s R o 14
QiMegianmsgs < s s R S R S s TRREeRl 15
ATChREOHIRGT 5 sn s it i e sl s L R L R T 16

S COREHRISIONS o, s e 18

Th.'ORl - - O'Mega: - - ACAT 2000

Il
i

ok
L
b

Lt
[p il A
- 'ﬂ11=

Functional Programmlng 1
e Hindley-Milner type system

— no holes {i.e. no casts) programs never crash
— automatlc type Inference combines type safety Wlth conmse notation

Th Ofil 5 sl e O'Mega il BAC AT 2000

Functional Programming 1
e Hindley-Milner type system

— no holes (i. €. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

Th. Ohnl e T O'Mega i i ACAT 2000

Functional Programming 1
e Hindley-Milner type system

— no holes (I. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

Th. Ohnl e T O'Mega i i ACAT 2000

Functional Programming 1
e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

Th.'ORl - - O'Mega: - - ACAT 2000

Functional Programming 1
e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

*. manipulation of recursive data structures (trees, DAGS, etc.)
straightforward, no user memory management required

Th.'ORl O'Mega ACAT 2000

Functional Programming 1
e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

*. manipulation of recursive data structures (trees, DAGS, etc.)
straightforward, no user memory management required

e first class functions

Th.'ORl O'Mega ACAT 2000

Functional Programming 1

e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

*. manipulation of recursive data structures (trees, DAGS, etc.)
straightforward, no user memory management required

e first class functions, e. g. composition

let compose f g x = f (g X);;
val compose : (a -=> 'b) -> ('c -> 'a) -> '¢c > b

e functorsimapping abstract data types (cf. categories)

Th.'ORl O'Mega ACAT 2000

Functional Programming 1

e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

*. manipulation of recursive data structures (trees, DAGS, etc.)
straightforward, no user memory management required

e first class functions, e. g. composition

let compose f g x = f (g X);;
val compose : (a -=> 'b) -> ('c -> 'a) -> '¢c > b

e functorsimapping abstract data types (cf. categories), e. g.

— one code creates a set from any ordered type (numbers, flavors, ...)

Th.'ORl O'Mega ACAT2000

Functional Programming 1

e Hindley-Milner type system

— no holes (i. e. no casts): programs never crash
— automatic type inference combines type safety with concise notation
— parametric polymorphism facilitates code reuse by generic programming

e persistent data structures

— all accessible values remain valid forever

*. manipulation of recursive data structures (trees, DAGS, etc.)
straightforward, no user memory management required

e first class functions, e. g. composition

let compose f g x = f (g X);;
val compose : (a -=> 'b) -> ('c -> 'a) -> '¢c > b

e functorsimapping abstract data types (cf. categories), e. g.

— one code creates a set from any ordered type (numbers, flavors, .. .),
another code creates a DAG from any forest (binary, n-ary, .. .)

Th.'ORl O'Mega ACAT2000

The DAG: Functor 12

An ordered type:
module type Ord = sig type t val compare : t -> t -> int end
Forests are essentially parent/offspring relations:

module type Forest =
sig
module Nodes : Ord
type node = Nodes.t
type edge and children and t = edge * children
val compare : t -> t -> Int
val for all : (node -> bool) -> t -> bool
val fold : (hode -> 'a -> 'a) >t -> 'a -> 'a
end

The DAG functor creates the DAGSs corresponding to a given forest:

module MakeDAG (F : Forest) :
DAG with type node = F.node and type edge = F.edge
and type children = F.children

Th.'Onl O'Mega ACAT2000

The DAG Functor 13
DAGs are essentially condensed parent/offspring relations:

module type DAG =
Sig
type node and edge and children and t
val empty : t
val add node : node >t -> t
val add offspring : node -> edge * children -> t -> t
exception Cycle
val is node : node -> t -> bool
val is sterile : node -> t -> bool
val is _offspring : node -> edge * children -> t -> bool
val fold nodes : (node -> 'a -> 'a) >t -> 'a -> 'a
val fold : (node -> edge * children -> 'a -> ’a) ->
t ->'a ->'a
val harvest : t -> node >t ->t
val lists it -> (node * (edge * children) list) list
end

narvest selects the minimal DAG, list yields a seguence of assignments.

Th.'Onl O'Mega ACAT2000

Objective Caml {a. k. a..O'Caml) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...

Th. Onl e T O'Mega i i ACAT2000

Objective:Caml {(a. kia. Q'Camil) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...

optimizing compiler can reach 50% of the speed of raw C for the same
algorithm

Th.'ORl O'Mega ACAT 2000

Objective:Caml {(a. kia. Q'Camil) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...

optimizing compiler can reach 50% of the speed of raw C for the same
algorithm

*. can beat C and C++ with recursive algorithms

Th.'ORl O'Mega ACAT 2000

| Iy,

Objective:Caml {(a. kia. Q'Camil) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...
optimizing compiler can reach 50% of the speed of raw C for the same
algorithm
*. can beat C and C++ with recursive algorithms

O'Caml’s transparent applicative functors more suitable for my
applications than Standard-MLs generative functors

Th.'Onl O'Mega ACAT2000

Objective:Caml {(a. kia. Q'Camil) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...
optimizing compiler can reach 50% of the speed of raw C for the same
algorithm
*. can beat C and C++ with recursive algorithms

O'Caml’s transparent applicative functors more suitable for my
applications than Standard-MLs generative functors

available as free and open source software

Th.'Onl O'Mega ACAT2000

Objective:Caml {(a. kia. Q'Camil) 14
e interactive toplevel and fast bytecode compiler for development and prototyping

e lean & mean implementation ...
optimizing compiler can reach 50% of the speed of raw C for the same
algorithm
*. can beat C and C++ with recursive algorithms

O'Caml’s transparent applicative functors more suitable for my
applications than Standard-MLs generative functors

available as free and open source software

the bytecode variant works on all systems with an ANSI-C compiler, the
native compiler is available for all relevant systems

can be bootstrapped in O(10) minutes

Th.'Onl O'Mega ACAT2000

o
Ll
L

13
TS
-

i

| G,

O'Mega 15

(| physics model |)
target language

N\

» = source code for amplitude

. external particles

e the physics model is currently specified in O'Caml, e. g.:

let charged currents n =
[(L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G CC);
(D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G CC);
(U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G CC)]

there will soon be a parser for CompHEP model files (probably also for
GRACE) and later for O’Mega'’s own input language.

Th.'Onl O'Mega ACAT2000

| G,

O'Mega 15

(| physics model |)
target language

N\

» = source code for amplitude

. external particles

e the physics model is currently specified in O'Caml, e. g.:

let charged currents n =
[(L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G CC);
(D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G CC);
(U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G CC)]

there will soon be a parser for CompHEP model files (probably also for
GRACE) and later for O’Mega'’s own input language.

e the target language is specified as a O’Caml module.

Th.'Onl O'Mega ACAT2000

O'Mega 15

(| physics model |)
target language

7\

» = source code for amplitude

. external particles

e the physics model is currently specified in O'Caml, e. g.:

let charged currents n =
[(L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G CC);
(D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G CC);
(U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G CC)]

there will soon be a parser for CompHEP model files (probably also for
GRACE) and later for O’Mega'’s own input language.

e the target language is specified as a O’Caml module. Inventing a specification
language will not be economical in this case.

Th.'Onl O'Mega ACAT2000

O'Mega 15

N\

(| physics model |)
target language | » = source code for amplitude

. external particles

e the physics model is currently specified in O'Caml, e. g.:

let charged currents n =
[(L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G CC);
(D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G CC);
(U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G CC)]

there will soon be a parser for CompHEP model files (probably also for
GRACE) and later for O’Mega'’s own input language.

e the target language is specified as a O’Caml module. Inventing a specification
language will not be economical in this case.

e the external particles are given on the command line

Th.'Onl O'Mega ACAT2000

O'Mega 15

N\

(| physics model |)
target language | » = source code for amplitude

. external particles

e the physics model is currently specified in O'Caml, e. g.:

let charged currents n =
[(L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G CC);
(D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G CC);
(U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G CC)]

there will soon be a parser for CompHEP model files (probably also for
GRACE) and later for O’Mega'’s own input language.

e the target language is specified as a O’Caml module. Inventing a specification
language will not be economical in this case.

e the external particles are given on the command line (GUI later)

Th.'Onl O'Mega ACAT2000

Architectiire

16

O’Caml’s powerful module system
supports a very flexible architecture w/
functors building applications from
iIndependent modules

Th.'ORl - - O'Mega:

ACAT2000

Architecture 16

O’'Caml’s powerful module system
supports a very flexible architecture w/
functors building applications from
iIndependent modules

s =
Fortran77 [Fortran | Helas

QED [QCD | SM
C | C+t | Java
MSM | L det iega O'Caml [Form [LaTeX | ...
Models

Targets

Topology Momentum

Combinatorics

Product

ThoList

Th.'ORl O'Mega ACAT2000

Architecture

16

O’'Caml’s powerful module system
supports a very flexible architecture w/
functors building applications from

iIndependent modules

QED | QCD | SM

MSSM | User def. Omega

Models

Fas

Fortran77 [Fortran | Helas

C|C++|

Java

O'Caml [Form [LaTeX | ...

Momentum

Combinatorics

ThoList

The module Targets contains

implementations of the signature

Target for each target language

Th. Ohnl

O'Mega

ACAT 2000

Architecture 16

O’'Caml’s powerful module system _
supports a very flexible architecture w/ The module Targets contains

functors building applications from implementations of the signature
independent modules Target for each target language & the
_ module Models contains
Ogiga ‘=|:Ei' X H
% Implementations of Model for each
oot &ff chran(l? [fgrtlraln |Jl;5|Tas (class of) physics models.
Nodds O'Caml | Form | LaTeX |-...

Topology Momentum

Combinatorics

ThoList

Th.'Onl O'Mega ACAT2000

Architecture 16

O'Caml’s powerful module system _
supports a very flexible architecture w/ The module Targets contains

functors building applications from implementations of the signature
independent modules Target for each target language & the
S module Models contains
Ogiga i i
% Implementations of Model for each
oEToch S bt o o7 | Fowe [T (class of) physics models.E. g. the
Vg~ L] [OrCam TFam LaTeX] application writing Fortran95 for the

standard model is

module O = Omega.Make
(Fusion.Binary)
(Targets.Fortran)

Topology | | Momentum (MOdG'SSM)

/ let = O.main ()

Combinatorics

ThoList

Th.'Onl O'Mega ACAT2000

Conclusions 17
1 Feynman Diagrams, DAGs, and Keystones 2

2 ImplemeRtation . . i 00 R 11
S ConclusioRs: L s s e e 18
First ResElESE e e i e R e e e 18
G toigEs Rt s s isiiisi il il s s s s S Rl s e 19

Th.'ORl O'Mega ACAT 2000

Eirst Restilts 18
Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams
ete = #

e Vediryy
e veduyyy
e v.duyyyy

Th.'ORl O'Mega ACAT 2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

Eirst Restilts 18
Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams
ete = #

e Vedil 20

et vedity 146

e Vediryy 1112

e V.diyyy 12420

et v.diryyyy | 138816

Th.'ORl O'Mega ACAT2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

A

Eirst Restilts 18
Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega
efe = # #prop.
e Vedil 20 14
e veduy 146 36
e Vediryy 1112 94
e V.diyyy 12420 168
et v.diryyyy | 138816 344

Th.'ORl O'Mega ACAT2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

First:Resiilts

18

Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega

efe — # vertices | #prop. | vertices
e veodi 20 80 14 44
e'vediry 146 730 36 151
e Vedityy 1112 6672 94 468
e Vedityyy 12420 86940 168 1246
e veduyyyy | 138816 | 1110528 344 3746

Th. Ohnl

O'Mega

ACAT2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

First:Resiilts

18

Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega

efe — # vertices | #prop. | vertices
e veodi 20 80 14 44
et vediry 146 730 36 151
e Vedityy 1112 6672 94 468
e Vedityyy 12420 86940 168 1246
e veduyyyy | 138816 | 1110528 344 3746

e O’'Mega amplitudes for up to 7 particles (“2 — 5”) tested against MADGRAPH

Th. Ohnl

O'Mega

ACAT2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

et
SNEE

First Restilts

18

Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega

efe — # vertices | #prop. | vertices
e veodi 20 80 14 44
et vediry 146 730 36 151
e Vedityy 1112 6672 94 468
e Vedityyy 12420 86940 168 1246
e veduyyyy | 138816 | 1110528 344 3746

e O’'Mega amplitudes for up to 7 particles (“2 — 5”) tested against MADGRAPH

agreement for random momenta always better than 10!

Th. Ohnl

O'Mega

ACAT2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

Eirst Restilts 18
Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega

efe — # vertices | #prop. | vertices
e Vedll 20 80 14 44
et vediry 146 730 36 151
e Vedityy 1112 6672 94 468
e Vedityyy 12420 86940 168 1246
e veduyyyy | 138816 | 1110528 344 3746

e O’'Mega amplitudes for up to 7 particles (“2 — 5”) tested against MADGRAPH

agreement for random momenta always better than 10!

First realistic application

e simulation of six fermion final states in W™ W scattering for the TESLA
Technical Design Report, using WHIZARD by Wolfgang Kilian as unweighted
event generator.

Th.'ORl O'Mega ACAT 2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

et
SNEE

Eirst Restilts 18
Radiative corrections to four fermion production, standard model, unitarity gauge:

process Diagrams O'Mega

efe — # vertices | #prop. | vertices
e Vedll 20 80 14 44
et vediry 146 730 36 151
e Vedityy 1112 6672 94 468
e Vedityyy 12420 86940 168 1246
e veduyyyy | 138816 | 1110528 344 3746

e O’'Mega amplitudes for up to 7 particles (“2 — 5”) tested against MADGRAPH

agreement for random momenta always better than 10!

First realistic application

e simulation of six fermion final states in W™ W scattering for the TESLA
Technical Design Report, using WHIZARD by Wolfgang Kilian as unweighted
event generator.

Get it from http://lwww.ikp.physik.tu-darmstadt.de/ ohl/omega/

Th.'ORl O'Mega ACAT 2000

http://www.ikp.physik.tu-darmstadt.de/~ohl/omega/

T

et

A
' ‘\.’"E‘:

.\l.n.n._.._ -

frs

Outlook 19

e QCD

— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

Th.'ORl O'Mega ACAT 2000

“Outlook 19

e QCD

— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

¢ O’'Mega Virtual Machine

Th.'ORl O'Mega ACAT 2000

Outlook 19

e QCD

— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

¢ O’'Mega Virtual Machine

. most time is spent in non-trivial vertex evaluations for vectors and spinors,
that take O(10) complex multiplications

Th.'ORl O'Mega ACAT2000

Outlook 19

e QCD
— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

e O’'Mega Virtual Machine

. most time is spent in non-trivial vertex evaluations for vectors and spinors,
that take O(10) complex multiplications

. virtual vertex evaluation machines can challenge native code and avoid
compilations

Th.'Onl O'Mega ACAT2000

Outlook 19

e QCD
— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

e O’'Mega Virtual Machine

. most time is spent in non-trivial vertex evaluations for vectors and spinors,
that take O(10) complex multiplications

. virtual vertex evaluation machines can challenge native code and avoid
compilations

e O'Giga: O'Mega Graphical Interface for Generation and Analysis

Th.'Onl O'Mega ACAT2000

Outlook 19

e QCD
— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

e O’'Mega Virtual Machine

. most time is spent in non-trivial vertex evaluations for vectors and spinors,
that take O(10) complex multiplications

. virtual vertex evaluation machines can challenge native code and avoid
compilations

e O'Giga: O'Mega Graphical Interface for Generation and Analysis

e O'Tera: O'Mega Tool for Evaluating Renormalized Amplitudes

Th.'Onl O'Mega ACAT2000

Outlook 19

e QCD
— up to two colored particles are already handled
— factorization for many-jet final states?

e Supersymmetry and MSSM

Jurgen Reuter (Darmstadt) has added unified support for Dirac and
Majorana fermions using the Feynman rules of Ansgar Denner et al.

e O’'Mega Virtual Machine

. most time is spent in non-trivial vertex evaluations for vectors and spinors,
that take O(10) complex multiplications

. virtual vertex evaluation machines can challenge native code and avoid
compilations

e O'Giga: O'Mega Graphical Interface for Generation and Analysis

e O'Tera: O'Mega Tool for Evaluating Renormalized Amplitudes

Th.'Onl O'Mega ACAT2000

	Feynman Diagrams, DAGs, and Keystones
	Perturbative Complexity
	One Particle Off Shell Wave Functions
	Keystones
	Symmetric Keystones
	Directed Acyclical Graphs
	Algorithm
	Ward Identities

	Implementation
	Functional Programming
	The DAG Functor
	Objective Caml (a.k.a. O'Caml)
	O'Mega
	Architecture

	Conclusions
	First Results
	Outlook

