Tailorable Software
Architectures in the Accelerator
Control System Environment

Igor Mejuev, Akira Kumagai
PFU Limited

Eiichi Kadokura

High Energy Accelerator Research Organization
(KEK)

In this work we introduce the results of feasibility study on implementing
end-user tailorability in the software for accelerator control system,
considering the design and implementation of distributed monitoring
application for 12 GeV KEK Proton Synchrotron as an example.




Runtime Tailorability

 Tailoring : further evolution of an
application after deployment

* Motivations : dynamicity and diversity of
requirements

» Dynamicity: waterfall model does not work
in the real world

 Diversity: a Web-based system has
uncertain and heterogeneous audience

Tailoring is further evolution of an application after deployment in order to
adapt it to requirements that were not accounted for in the original design.

Generic motivations for implementing tailorability in software systems are
constituted by dynamicity and diversity of users’ requirements.

The dynamicity can be derived from the inconsistency between waterfall
software development model and the development process taking part in the
real world. In accordance with evolutionary and participative design
methodology by Floyd et al. the requirements are not given and therefore
can not be strictly analyzed.

The diversity of requirements is especially important for the Web-based
systems — in general it is difficult to trace the usage of the system deployed
on the Web and, moreover satisfy the requirements of heterogeneous groups
of users within a single application.




Tailorability in the Accelerator
Control System Environment

 Tailorability is capable to solve the
contradiction between dynamicity and
complexity of software

« An example: dynamic scientific experiment
environment and complexity of software
and hardware under control

The application of runtime tailoring can solve the contradiction between
dynamicity of requirements and inherent complexity of software present in
some application domains.

An accelerator control system is an example of such a domain — the
dynamicity and flexibility are the essential requirements for scientific
experiment environment, however the amount of hardware and I/O channels
involved demands applications of computer control to achieve the
consistency of experimental setup.




Contents of This Talk

Tailoring vs. authoring interface

VEDICI : a generic implementation
framework for tailoring

Example : remote monitoring application
for 12 GeV KEK Proton Synchrotron

Conclusions and future work

The rest of this talk presents the following:

1) Definition of the notion of tailoring interface, considering the
differences between tailoring and authoring interfaces

2) Introduction of a generic tailoring platform (VEDICI), which
allows integrating multiple tailoring interfaces within a single
application instance

3) Design of customizable Web-based application for
monitoring beam conditions through the Internet

4) Conclusions and future work




Authoring Interface

ECHT D aennn

* Employed by
developers

 Requires full control
of the application

e Assumes distinction
between developers
and users

An authoring interface is typically used by developers of a computer system.
The interface can utilize techniques such as visual manipulations or form-
based programming, in order to speed up the process of development. The
authoring system is required to provide full control of the application and
available APIs, display the composition of the system in a consistent way,
and provide integration with runtime and deployment modules.

It is assumed that the users and developers of the system represent distinct
and geographically distributed groups.




Tailoring Interface

s Tailorable Teat Editor - Nelscape !IEI ) E m p I Oyed by

e Edt View Go Commuricator Help

o o a0 &% o B o l end-users

» Applied to the running
application

 Should reflect users’
K yesel cognitive views of a

e e given task

1

The intent of tailoring interface is to provide the users with the possibility to
customize an application to their particular needs and work situation. An
example of tailoring interface is a text processing application with
customizable toolbar.

In the case of tailoring, the modifications should be done by end-users and
within the execution environment. For shared applications or applications
deployed on the Web the system should support the persistence and
authentication of changes made by each user.

The differences between the authoring and tailoring interfaces can be
summarized by the following criteria: audience (who), usage pattern (how)
and context (when).




VEDICI

A generic platform for tailoring of
component-based applications

Allows decoupling of tailoring interfaces
and runtime components

Implemented with Java 1.3 and BML

Can support multiple tailoring interfaces
per application

VEDICI represents a generic tailoring platform which allows decoupling of
tailoring interfaces and runtime components.

VEDICI is implemented using Java 1.3 platform and Bean Markup
Language (BML).

A VEDICI application is represented as a nested hierarchy of compositional
markup specifications with the possibility to associate an individual tailoring
component with each specification. This approach allows integrating
multiple tailoring interfaces within an application instance.




Integrating Multiple Tailoring

Interfaces
Player A
Visualizer A
- g >_| source editor

Player B

Visualizer B
rule-based interface

=

The basic tailorable unit in our approach is player - a wrapper for a
composite component with associated visualizer. A player compiles a
composite component in accordance with a given Compositional Markup
Specification. A visualizer defines tailoring interface for a specific class of
composite components,

A player can be included into a composite component wrapped by another
player, so that a running application represents a nested hierarchy or players.
Association of visualizer at the level of individual player allows supporting
multiple visualization schemes per application.




Remote Monitoring Application
for 12 GeV PS at KEK

Java Clients

| KEK backbone Ethernet

InTouch
1/0 server

Wonderware
Scout Outpost

Online monitoring application for KEK Proton Synchrotron should provide
display for the beam parameters, accessible in the Java applet environment.
The requirements on the design of monitoring application are summarized as
follows:

* The applet should be made multiplatform, thus it should not rely on native
libraries or OS-specific APIs

e The monitoring system should provide integration with third-party
commercial software: Wonderware InTouch, which is widely deployed at
KEK Proton Synchrotron

» The required degree of tailorability for the monitoring application is
identified as the possibility for the end-users to dynamically reassign
mappings of GUI components to 1I/O channels and customize visual
preferences (color, layout) for the components. Particular 1/0 channels are
required to display permanently, so that the tailoring functionality should be
disabled for the corresponding GUI objects




Implementation

e =« Compositional:

PS Beam Conditions

Java Beans + integrating
BML scripts

* Integrated with
Wonderware InTouch

» Applications can be
tailored using a mixture of
reusable visualizers

» Application repository
with authorization by
username and password

The monitoring application is composed from Java Beans integrated by
nested XML-based scripts (BML).

The data update is performed by a dedicated component, which wraps Scout
Outpost CGI interface and provides a refresh manager for dynamic
monitoring components. The refresh manager performs data polling by
sending batch requests to the Scout Outpost server.

The application provides an authoring tool for developing new applications
and reusable visualizers applicable for customization of the applications at
runtime (HierarchyBrowser, PropertyEditor, SourceEditor, VisualizerStub).

The users can save the customized applications in a server-side repository
with authorization by username and password. After restart of browser the
changes can be recovered using the same authentication scheme.




e Conclusions

— Implementation of runtime tailorability in the
accelerator control domain is feasible

— Preferred implementation technique is
tailorability by integration (component-based)

 Future Work
— Rich set of components
— Server push communication model
— Tailorable control applications

The prototype implementation showed that tailorability by integration can be
implemented in the accelerator control environment using Java Beans and
compositional markup specifications (BML).

In the future we would like to extend the prototype implementation by
providing a rich set of components and custom visualizers, usable in the
accelerator control system domain.

The current implementation uses polling of CGI server that creates
redundant traffic in the laboratory network. In the future version we consider
replacing the polling with server push interface, which is based on the
existing portable implementation of shared data channels.




Trademarks

« Java and all Java-based logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and
other countries.




