ATLAS Simulation: Status, Performance, and Future Plans

Frederick C. Luehring (for the ATLAS Collaboration)

Physics Department, Indiana University, Bloomington, IN 47405, USA

Abstract. From the earliest stages, simulation has played a key role in designing the ATLAS detector for LHC. For more than ten years the detector simulation was done using the FORTRAN-based GEANT3 program. Work is now underway to move the simulation to the object-oriented GEANT4 program.

Introduction

Simulation has played a key role in designing the general-purpose ATLAS detector for CERN’s Large Hadronic Collider (LHC). Millions of fully simulated Monte Carlo events were used to design the ATLAS detector. The original FORTRAN-based simulation is now being superceded by object-oriented code written with the GEANT4 [1] detector simulation tool. We are validating the GEANT4 physics models with testbeam data and investigating using XML to describe our detector geometry.

THE atlas DETECTOR

ATLAS is one of two large, general-purpose detectors at LHC and consists of:

1. A three-part charged particle tracking system in a 2 T magnetic field: an inner system of silicon pixels, a system of silicon strips, and an outer system of straw tubes using transition radiation for particle identification.

2. Two calorimeters: an electromagnetic liquid argon calorimeter using “accordion” shaped electrodes/lead plates, and a hadronic calorimeter consisting of iron and scintillator tiles centrally and a liquid argon system for || > 1.5 where the radiation dose is higher.

3. An outer muon detection system using drift-tubes and an air core toroidal magnet system

The ATLAS collaboration consists of over 1800 participants from approximately 170 institutions.

[image: image1.png]A

~
: 4

S) 7“‘\"’”/
N \

¥

7

'\!/g“’\/

Figure 1. The ATLAS detector.

Previous Simulation EFFORT

In the early 1990s the first full detector simulation of ATLAS was written using the FORTRAN-based GEANT3 [2] program. DICE (as this simulation was called) used the standard particle physics software of that time: ZEBRA [3] for memory management and the CERN-written tool CMZ for source code management. DICE was a batch system and used ASCII files containing 80-column “datacards” for control. It ran mainly on IBM mainframes and DEC VAX minicomputers. With the advent of RISC based technology, DICE was ported to all major types of RISC machines, with the HP RISC machine being the main development platform. As the ATLAS detector design took shape, more detail was needed in the simulation and the total number of lines of source code rapidly expanded. The LHCC review panel asked for a series of technical design reports (TDRs) to be written to validate the design of the ATLAS detector that also required many changes to the simulation. The batch-based DICE system made rapid development of new code difficult.

[image: image2.wmf]
Figure 2. Calculated ATLAS sensitivity for the discovery of a Standard model Higgs boson. An integrated luminosity of 100 fb-1 is assumed.

In 1995, a new version of the simulation, DICE95 [4], was introduced. It had a preprocessor with its own language (AGE) to ease defining the detector geometry, materials, hits, and digitizations within GEANT3. There was a new interactive version of the simulation called ATLSIM that allowed dynamic linking of small parts of the simulation without having to rebuild the entire program. ATLSIM used the CERN-written KUIP [5] user interface that allowed the user to interact with ATLSIM on a command line or to use a macro scripting language called KUMAC. The new system greatly reduced development time and provided a nice environment to implement and debug the changes in the simulation. A new version of the batch mode program was also introduced at this time.

The ATLSIM/DICE95/AGE system has some limitations. First, the code is not written using Object-Oriented (OO) techniques. The code is so complex that only a few experts can understand it. Finally, key parameters describing the detector are coded into the source files instead of being maintained in a database.

The FORTRAN and GEANT3-based software was used to generate millions of fully simulated events. These simulations formed the basis of the ATLAS Detector and Physics Technical Design Report (Physics TDR) [6]. Figure 2: shows a key result of the Physics TDR studies: the ATLAS detector can discover the standard model Higgs particle with a significance of ≥ 10 for masses up to 1 TeV with an integrated luminosity of 100 fb-1. The events for the Physics TDR were fully reconstructed using the standard ATLAS reconstruction program ATRECON without using any of the Monte Carlo truth information. The simulation had about 16 million volumes representing detector elements and the surrounding service material. Table 1 shows the CPU consumption of the GEANT3, simulation including the tracking phase and the calculation of digitizations (simulated detector readouts).

TABLE 1. CPU time need for simulation of ATLAS detector with GEANT 3.21 (400 MHz Pentium II).

Event Type
Timing in Inner Detector
Column Header Goes Here

Single 10 GeV electron
6
100

Single 10 GeV pion
4
60

Minimum-bias event (|| < 3.0)
190
2500

Many of the events were generated with the full background of pile-up events. When running at design luminosity, the LHC particle bunches cross every 25 ns, producing an average of 23 interactions per crossing. With the expected ~80% LHC duty factor and pp cross-section at 14 TeV this leads to ~720 million particle interactions per second. Simulating the effect of these background hits was the most challenging part of producing accurate results. To introduce the effect of the pile-up hits, we generated the background events individually. We then combined the hits from a large number of background events with the hits from an event-of-interest during the calculation of the detector response (digitization). The amount of computer time spent generating the pile-up events was greatly reduced by storing a few thousand background events in a file, then randomly reading 100-150 background events from the file. As long as sufficient care is taken in randomizing the selected events, it is then possible to reuse the background events many times without generating new events. In the ATLAS implementation of GEANT3, it was still necessary to store all the hits in memory to combine them, which limited the luminosity that could be simulated.

Conversion to OO

ATLAS has decided to convert the simulation to GEANT4, using object oriented (OO) software engineering methods. This decision is conditional on validating that, using GEANT4 code; we can model the physics in such a way as to reproduce the results of the ATLAS testbeam program. To expedite the conversion process to GEANT4, the wrapping of FORTRAN routines with C++ is allowed. In addition, it has been decided to store parameters describing the detector geometry and materials in a software-neutral database. This will allow all parts of the ATLAS offline software to use the same source of information about the detector instead of having to manually enter information into each program separately.

[image: image3.wmf]
Figure 3. Comparison of ionization energy deposit in a straw tube for GEANT3 and testbeam data to GEANT4 results.

For the past year, the ATLAS offline software group has conducted a comprehensive program to compare testbeam results for all ATLAS subdetector systems with GEANT4 simulations of each testbeam setup. This is one of the first real checks that GEANT4 produces accurate results, and has been strongly supported by the GEANT4 team. Figure 3 shows a preliminary comparison of the ionization deposition in an ATLAS straw tube for GEANT3, GEANT4, and actual testbeam data

In designing the new simulation it became obvious that we needed a systematic way of storing information about the detector dimensions and materials. We decided to develop a generic detector description language called ATLAS Generic Detector Description (AGDD) using XML. XML was selected because it is a commercial standard and many compatible tools (such as parsers and editors) are commonly available.

CONCLUDING REMARKS

ATLAS has many simulation tasks to perform over the next 18 months. We must finish comparing the GEANT4 physics models with our testbeam data to ensure valid results before running large Monte Carlo event productions. We must implement the model of the full ATLAS detector in GEANT4, integrating the full detector simulation within our analysis framework. We need to design hits and digitizations for the GEANT4 simulation. Our first mock-data challenge requires the full chain of event-generation, simulation, and reconstruction to be operating with the new software. Meeting the November 1, 2001 deadline for this will be a challenge.

References

1.
S. Gianni and G. Folger, Introduction to Geant4, http://wwwinfo.cern.ch/asd/geant4/G4UsersDocuments/Welcome/IntroductionToGeant4/html/index.html.

2.
Application Software Group, Geant Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013, Geneva: CERN, 1993.

3.
Application Software Group, The Zebra System, CERN Program Library Long Writeup Q100/Q101, Geneva: CERN, 1995.

4. A. Artamonov et al., Dice-95, Atlas-Soft/95-14c, Genva: CERN, 1995.

5. Application Software Group, KUIP: Kit for a User Interface Package, CERN Program Library Long Writeup I102, Geneva: CERN, 1993

6. The ATLAS Collaboration, ATLAS Detector and Physics Performance Technical Design Report, ATLAs TDR 14, CERN/LHCC 99-14, Geneva: CERN, 1999

.

