C++ In Scientific Application: A Case Study

Walter E. Brown

Computing Division

Fermi National Accelerator Laboratory

Batavia, Illinois 60510-0500

Abstract. This paper describes a project, SIunits, designed and implemented in C++. Addressing a problem that the author has been working on for nearly twenty years, SIunits could not have been implemented without the generic programming and meta-programming capabilities afforded by C++.

History

Galileo provided us the basis of all scientific computation when he wrote, “We must measure what is measurable, and make measurable what is not so.” However, mensuration in other contexts has a long history. For example, Leviticus 19:35 enjoins us, “Ye shall do no unrighteousness in judgment, in measures of length, of weight, or of quantity.”

Clearly, there has been significant progress in accuracy. Consider, as a very simple example, the value of pi. In I Kings 7:23 we read, “And he made a molten sea, ten cubits from brim to brim …, and a line of thirty cubits did compass it round about.” The ratio of these data yields π = 3, an error of less than 5%.

It is noteworthy that widespread use of standardized units came only much later. Among the significant provisions of the Magna Carta, we find the declarations, “Throughout the kingdom there shall be standard measures of wine, ale, and corn.… Weights [also] are to be standardized similarly.”

Accepted First Principles

A beginning student in any scientific discipline is taught, almost at once, the critical importance of calculations involving physical quantities. Often termed “dimensional analysis” or “quantity algebra,” the appropriate techniques are invariably stressed to students early on. For example, Halliday & Resnick (1970) emphasize the importance of such discipline in such terms as:

· “In carrying out any calculation, always … attach the proper units to the final result, for the result is meaningless without this…”

· “You should check the dimensions of all the equations you use.”
· “One way to spot an erroneous equation is to check the dimensions of all its terms….”
If these are indicative of the accepted and expected methodology to be used in hand calculation of physical quantities, consider the formulation of analogous statements bearing on computer-based calculations. For example, we might have, as a parallel to the last of the above (differences italicized):

· “One way to spot an erroneous program is to check the data types of all its objects.”

This clearly suggests that it is likely to be useful for computer-based calculations to carry out both units checking and type checking.

Type checking Augments Traditional Units checking

Type checking is far from a new concept. Aristotle, for example, wrote, “There is no transfer into another kind, like the transfer from length to area and from area to solid.” Indeed, there is considerable evidence that type checking is still needed.

As a representative case in point, a correspondent (who has requested his identity be withheld) writes, “[A] famous bug in this shop is 2*pi+r*w as the area of a strip of a cylinder, which escaped notice for years….” [emphasis added]. This incident provides compelling evidence of the subtle nature of computer-based calculation. It also strongly hints at the value of computer-based type checking, for such checking would have discovered that the above expression attempts to sum incommensurate quantities and is thus inconsistent with a purported area calculation.

Numeric Programming Today

In the very early stages of this project, we had undertaken a study to get a feel for the degree to which modern coding practices apply these principles with respect to numeric programming involving physical quantities. Extensive inspection of code samples in 1998 showed:

· Heavy use of native numeric types (e.g., double), and

· Occasional use of synonymous types (e.g., CLHEP's HepDouble).
However, it is easy to demonstrate that such practices are wholly inadequate. We have merely to consider the meaning of such expressions as:

· Avogadro's number + speed of light?

· Distance + Energy?

· Mass + Momentum?

Alas, arbitrary expressions involving such generally meaningless combinations will typically compile without complaint!

As further evidence of the need for computer-based checking, the following excerpt from the Washington Post (Oct. 1, 1999) discusses the failed Mars Climate Orbiter mission, graphically demonstrating that unit errors are both costly and very hard to find.

NASA's Mars Climate Orbiter was lost … because engineers failed to [convert] from English units to metric, an embarrassing lapse that sent the $125 million craft fatally close to the Martian surface…. [T]he error had affected the orbiter mission from its launching almost 10 months and 416 million miles before its … failure. And yet the problem was never caught and corrected….

We believe the present unfortunate state of affairs is a relic of past limitations. In particular, early programming languages (such as Fortran and Cobol) provided inadequate expressiveness. Data types, for example, were limited to those implemented in the computer hardware. This seemed adequate, however, because these types were of sufficiently general utility. Frankly, we just didn't know what we were missing!

Programmer-defined data types came later. Such languages as Pascal and Modula had enough features to validate the feasibility and utility of the then-novel “data abstraction” methodology. However, the same languages lacked generic programming and meta-programming capabilities.

Today, we can do much better. Using contemporary technology afforded by C++, we have expressive power resulting from such newer features as classes, namespaces, and templates.

The early, experimental “data abstraction” methodology has evolved, as well. We now have object-oriented techniques to apply to software design and programming. Generic programming and meta-programming technology has become available. Finally, static type checking has become the norm.

Static type checking is a well-known and well-understood concept in computer science. When consistently applied, static type checking provides:

· Succinct, intelligible, consistent (!) program documentation;

· Information that a compiler could exploit to produce more efficient code; and

· Important programmer feedback via early (compile-time) error detection.

SIunits
It is against this background that the current project, known as SIunits, has evolved. The following five goals were established from the outset:

· Application of contemporary technology to computation involving physical concepts,

· Convenient (near-trivial) expression,

· General utility based on existing standards,

· Nomenclature from our problem domain, and

· No run-time performance penalties!

These design goals have been realized via application of modern C++ coding practices.

SIunits is based on le Système internationale d'unités (SI), the international standard (having the force of treaty) that codifies accepted practice in dealing with physical quantities. SI specifies base and derived quantities as well as corresponding units of measure; SIunits has adopted these specifications and enforces them via compile-time static type checking. This effectively forbids all incommensurate expressions, exactly as desired! Further, any implied quantities (such as might arise mid-computation) are generated as needed without programmer intervention.

In addition, the SIunits project has met its remaining goals, too. Among its other features, SIunits attaches no run-time overhead for typical usage:

· No extra memory space per object;

· No extra execution time for user functions;

· Small initialization costs for I/O, etc.

In addition, SIunits includes a spectrum of five models, a feature first suggested by a colleague, Dr. Mark Fischler. In the relativistic model (where the speed of light is one), for example, it is possible to add meters to seconds; it is otherwise (i.e., in the standard model) highly unlikely to be a meaningful expression, and thus highly likely to reflect a conceptual and attendant computational error. Models are upwardly compatible.

SIunits Programming

Within SIunits, physical quantities (often known as dimensions) are implemented as types. Of particular interest, and consistent with SI, SIunits provides the seven base quantities (Length, Mass, Time, Current, Temperature, AmountOfSubstance, and LuminousIntensity). It is from these seven that all remaining quantities are derived. Indeed, 22 derived quantities are given special names by SI; these include, for example, Energy, Force, Entropy, etc. These and many, many more derived quantities are provided by SIunits.

Units behave as right-hand constants. Of special note are the 7 base units (meter, kilogram, second, Ampere, Kelvin, mole, candela) and the 22 composite units (joule, watt, hertz, katal, …) specified by SI, as well as the various multiples and submultiples (mega-, nano-, etc.). All these are found in SIunits, too.

The following code provides some of the flavor of programming with SIunits.

// --- Preliminaries:

#include “siStdModel”

using namespace si;

typedef Length<float> Len;

// --- Good Instantiations:

Len d1;
// implicitly 0.0F

Len d2(2.5*meter);

Len d3(1.2*centi_*meter);

Len d4(5*d3);

// --- Bad Instantiations:

Len d6(d2*d3);
// no!

Len d7(3.5);

// no!

Len d8 = 3.5;

// no!

Len d9;

// ok, but …

 d9 = 3.5;

// no!

// However:

Len d10(d2+d3);
// ok

Concluding Viewpoints

It seems common, in the professional scientific community, to hear assertions such as, “I did enough dimensional analysis in school. I know the units my work involves, so I don't need to repeat my analyses for every calculation.” This attitude is certainly one of convenience; it is equally certainly unprofessional.

As our correspondent has written, “[T]hese are really insidious bugs, very hard to find by proofreading ... because your brain knows what the expression is supposed to be [so] you tend to see the intent and not the error.” Given the convenience of SIunits, there appears no longer any excuse for such a lackadaisical attitude. When first presented with SIunits, a potential user quickly remarked, “[SIunits] is the first really good reason I've seen to switch from Fortran to C++.”

In brief, we note that SIunits could not have been carried out absent modern C++ metaprogramming and generic programming support. This support is rapidly improving as vendors provide increasingly Standard-compliant C++ compilers. Alas, the concepts underlying C++ seem well understood and well applied by only a small percentage of the scientific community.

