Experiences Reviewing Scientific C++ Code

Marc Paterno

Computing Division

Fermi National Accelerator Laboratory

Abstract. In this paper I present several issues related to the use of C++ in scientific code, drawing from my experience reviewing large bodies of such code for the Fermilab community, especially for the CDF and DØ experiments at the Fermi National Accelerator Laboratory.

Introduction

C++ has become the lingua franca for scientific programming in the high-energy and nuclear physics (HENP) communities. C++ has many advantages to recommend it: it supports multiple programming “paradigms” (object-oriented, structured, and generic programming), it is (or at least can be) efficient, it is widely available, and there is an international standard defining the language [1]. However, the C++ language is both large and complex, and it is not always obvious how to take advantage of the power it makes available to the user.

Over the past 18 months, my colleague Jim Kowalkowski and I have been part of a number of reviews of medium-to-large C++ projects, mostly for the CDF and DØ experiments at Fermilab. In this paper, I summarize what we have found, through these reviews, to be the most problematical issues with the HENP use of C++.

ABSTRACTION

Useful, Yet Problematic

Support for abstraction is the most valuable feature of C++ in the HENP community. To appreciate this we must remember from where we come: minimally structured Fortran code. While such coding practice was sufficient to the tasks of smaller experiments in the past, the software for current experiments (and those of the future) is of a scale that requires better programming techniques. Good use of those C++ features which support abstraction (e.g. object-oriented programming and generic programming) is key to the currently understood better techniques.

Unfortunately, this strength of C++ is a double-edged sword: the most problematic feature of C++, as it is currently used in the HENP community, is this same support for abstraction. When poorly used, abstraction can make code less clear, less maintainable, and less efficient. It is not always easy to determine the right level of abstraction for a given use. For many physicists, previous programming experience does not apply – new techniques have to be learned.

Common Mistakes With Abstraction

The mistakes made with abstraction tend to fall into three categories: too little abstraction, too much abstraction, and poorly organized abstraction. Within each category, one can identify clear subcategories. In this section, I list those errors we have found to be most common, along with a very brief description of how the problem may often be solved.

Too Little Abstraction

Programmers coming to C++ from Fortran 77 often do not have experience in defining clear abstractions to be expressed in code, because Fortran 77 provides so few facilities to help the programmer. One of the first learning tasks faced by such newcomers to C++ is to make use of the features of the language that support abstraction – mostly, the use of classes.

The most extreme form of “missing the abstraction” is the missing class. A common symptom of this error is a set of functions that pass around a common set of arguments, or perhaps an array of some basic type. The reader of the code must keep track of which items should be associated to represent a concept. This error is generally not hard to fix: introduce a class to represent the concept. The resulting code is generally easier to understand, and thus easier to maintain.

The next most extreme form of “missing the abstraction” is the do-nothing class. This is a class that has nothing but “set” and “get” methods – it is essentially a C-style struct. The user of the class must extract values and perform calculations on these values themselves. The resulting code is difficult to read, because the code is full of low-level manipulations. Often a significant improvement can be obtained by inspecting the code for common manipulations, and by putting those manipulations into the class as member functions. The resulting code is more expressive, and thus easier to maintain.

Too Many Abstractions

Some time after becoming aware of the power of abstractions to make code more expressive, many users succumb to the urge to introduce abstractions everywhere. The result can become a problem of too many abstractions.

The most extreme form of “too many abstractions” is the unused base class. This occurs when the programmer has introduced a base class to represent each concept, planning for future flexibility, where such flexibility is never needed. The result is a design in which many abstract classes have only one derived class, which all clients use. In this case, the base class adds complexity to the system, but provides no resulting gain in functionality. This sort of over-design makes the code more difficult to understand, and thus more difficult to maintain. This can be improved by eliminating the base class in favor of the sole derived class.

Another problem caused by over-design is that of very deep class hierarchies, in which a new layer of inheritance is added for each small increment of functionality – even though those increments (the middle layers of the hierarchy) are not very useful in and of themselves. This sort of over-design makes it much more difficult for users to understand the code, requiring them to look through a long series of headers (or requiring the generation of a great deal more documentation to be read). This extra burden is a disincentive to the reuse of such classes, thus defeating the purpose of the design.

Yet another problem arising from the introduction of needless abstraction is illustrated by the class design shown in Figure 1. In this design there is only one subclass of each base class. Users who get an AbsComponent* from the AbsThing interface have to (dynamic) cast before they can use it to get at function h( ). Thus the introduction of the needless abstraction makes the code both more difficult to understand and potentially less efficient – the dynamic cast, and the runtime type checking it uses, would not have been necessary if the needless layer of abstraction had not been present.


[image: image1.wmf]+f() : AbsComponent

AbsThing

+g() : void

AbsComponent

+h() : void

Component

Thing


Figure 1. UML static diagram showing needless abstraction.

It must be noted that I am not arguing that there is no place for abstract classes and inheritance. I am arguing that it is not advantageous to use an inheritance hierarchy in places where the flexibility it gains is of no benefit, and the complexity it introduces is a burden. Needless complexity makes code harder to understand, and thus harder to maintain.

Poorly Organized Abstraction

The third common problem I have noted in reviews is “poorly organized abstraction.” This is a problem not with missing classes, or with unused classes, but with classes that exhibit poor organization.

The first common example of this problem is the fat interface, a class with scores of functions that fall into several related groupings. The vast array of functions makes it difficult for the user to determine how to use the class, and forces the user to accept a huge collection of unused functions in order to obtain those few he wants. This introduces what may be a significant physical design burden on the user, who would prefer not to be coupled to those functions for which he has no use. Generally, such a class benefits from being broken up into a set of classes, each of which implements a single, well-defined concept. If some users want the combined interfaces of the entire assemblage, a class that provides the combination can remain as part of the system. This allows the user who wants the entire interface to obtain it, while allowing the user who does not want the entire interface to avoid having his class contain functions which don’t make sense for him.

A second form of the problem is the class with multiple purposes, and which contains a member datum whose state determines whether an instance is to perform task A or task B. This problem is exacerbated when the state of the object must be queried from the outside in order to determine how to use the object. A typical solution for this introduces a distinct class for each distinct purpose.

Abstraction: Summary

It seems quite difficult to find the right level of abstraction, but doing so is clearly important. Wrongly used abstraction results in code that is difficult to understand, difficult to maintain, and difficult to (re)use. Cases of too little abstraction seem easier to repair than cases of too much abstraction. This may be partly sociological, because it is usually those less certain of their command of C++ and object-oriented design that make the first mistake, and those with somewhat more experience who make the second mistake. We must be prepared to review our code and to make improvements if we are to gain the benefits that object-oriented design promises.

An excellent resource for additional methods of improving the design of existing code may be found in reference [2]. An excellent antidote to over-design may be found in the methodology described in reference [3].

LIBRARIES

HENP Libraries

There is a dearth of high-quality scientific C++ libraries. This is mostly a reflection of the fact that many projects were started with early versions of C++, and it has been difficult for these to catch up with modern C++. The lack of use of modern C++ manifests itself in several ways. The result is often not robust, less efficient than possible, and more difficult to maintain than need be.

One of the simplest problems is a lack of const correctness. This is generally a result of sloppiness on the part of the library designer, and not an issue with lack of compiler support. Lack of const correctness in a library can be especially painful, since user code must either follow suit in ignoring const correctness, or must over-use mutable data members and const_cast operators. The best solution to lack of const correctness is to fix the library; this is such a fundamental problem that users should not be forced to work around it.

A second problem is the use of non-Standard language extensions. Since such use tends to make code non-portable, this problem is especially significant. A simple example is the use of the type long long, an extension supported by several popular compilers. While this is a legal type in C99 [4], it is not in C++. In this simple example, the solution is clear: create a user-defined type with the appropriate semantics.

A third problem is the use of homegrown classes, rather than use of the classes of the Standard Library. This problem is most often seen in older libraries, especially those created before the Standard Library was widely available, even in draft form. Use of homegrown “string” and container classes causes a problem for code that must inter-operate with different libraries. This is what the Standard Library was designed for, and its use should be preferred to use of homegrown classes.

A fourth problem, the avoidance of templates in systems where templates should be applied, falls into the category of gratuitous language restrictions. This restriction is often a relic left over from early versions of compilers, many of which had poor support for templates. The result is widespread use of macros, with attendant loss of type safety, or the introduction of needless base classes, to provide a type that can be held in a homogenous container. The resulting code is often littered with casts, and is both less efficient and more difficult to maintain than appropriately templated code. Modern compilers provide much improved support, and the effort required to update old codes to conformance with the modern Standard is well worthwhile.

A final category of problem is one that appears at first glance to be a voluntary restriction, but which really amounts to a language extension. This is the use of compiler-specific directives to “turn off” C++ exception handling. Since exceptions are a part of the Standard, and are used by the Standard Library, this immediately results in non-Standard behavior – code that is mandated by the Standard to throw an exception cannot do so. One of the worst results of the decision to use such a language extension is that constructors no longer have a way to signal failure. Instead, one encounters classes with methods to query the status of created objects, to determine if they are in a “good” state. Careful coding would then require that this status be checked in many different places – leading, once again, to less-maintainable code, either because the code is cluttered with tests, or because many necessary tests are not performed.

Use of the Standard Library

One way to take advantage of the power of modern C++ is to take advantage of the Standard Library. I have found that use of the Standard Library in code I have reviewed is broad (many programmers use parts of it) but shallow (few programmers take advantage of more than a few features).

The containers of the Standard Library are used frequently, except where the use of some other library’s containers have taken over. The most common problem is that users have some trouble choosing the right container for their purpose.

The iterator classes of the Standard Library are used almost as widely, but are generally used in a simplistic manner. They are commonly used in loops, but rarely are used to denote a range of items. Instead, programmers usually pass around a collection (or a reference to one), which is less useful for generic programming purposes.

The algorithms of the Standard Library are chronically under-used. Many programmers have told me that the idiom of using function objects combined with the Standard algorithms seems unnatural, and that they are happier with explicit loops – even though their code is more likely to contain errors (such as off-by-one mistakes) or inefficiencies. Rarer still are user-invented generic algorithms, even though appropriate use of generic algorithms would help reduce the degree of coupling between libraries, and help the overall physical design of many projects.

Conclusion

C++ is a powerful tool for expressing concepts in code. As such, it is also large and complex. The HENP community is still learning to take advantage of the features of the language. Nonetheless, we have made vast improvement over our previous lingua franca, barely-structured Fortran.

The major problems we still face are several, and stem from both the innate complexity of our task, and the fact that many programmers are still catching up with the Standard.

References

1.
ISO, ISO/IEC 14882:1998 – Programming Languages – C++. This is the international standard for the C++ programming language.

2.
Fowler, Martin, Refactoring: Improving the Design of Existing Code, Reading, Massachusetts: Addison Wesley Longman, Inc., 1999.

3.
Beck, Kent, Extreme Programming Explained, Reading, Massachusetts: Addison Wesley Longman, Inc, 2000.

4.
ISO, ISO/IEC 9899:1999 – Programming Languages –C. This is the international standard for the C programming language.

_1036238953.vsd
+f() : AbsComponent�

�

AbsThing�

�

+g() : void�

�

AbsComponent�

�

+h() : void�

�

Component�

�

�

�

Thing�

�

�

�

�


