The Control Actions Framework

Paolo Calafiura

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Abstract. We have developed a prototype application framework that controls the execution of HEP software modules. The control actions framework is based on the well-known "hooks" architecture that many HEP developers are familiar with since the Fortran days. This design focuses on the critical association among the module instances and the controller component and features strongly typed associations, extensive run-time configurability and minimal compile-time dependency.

Introduction

Several HEP application frameworks[1,2] follow the "hooks" architecture, in which a controller exposes "hooks" at well determined stages of the application (for example when a new record has been read). The "physics" modules provide corresponding "callback" methods that the controller invokes to control the physics module execution. In this architecture, the application behaves like an event-synchronized set of Finite State Machines (FSM). The controller (an FSM itself) drives the physics modules FSM and keeps them synchronized.

This architecture is simple, familiar to the developers and the users, and works remarkably well for a large fraction of the data analysis and reconstruction tasks. Unfortunately some of the existing HEP frameworks that implement this architecture introduce a tight coupling among the controller and the physics modules: for each hook exposed by the framework the developers of the controllers must provide a callback method. This can be tedious and error prone to code. What is worse, this coupling makes the framework very rigid: introducing a new hook quickly becomes an expensive operation: every existing "physics" module must be edited and/or recompiled to implement the matching callback method.

 We want to support a more dynamic approach that allows the module developers to provide callbacks only for the actions (hooks) their modules must react to, and to introduce new actions as needed without triggering massive recompilations. The framework will notify modules only about the actions they are registered for, and it will control the order in which the modules are run.

 This dynamic association among the modules and the event loop is clearly related to the well-known Observer pattern [3]. But the observable/observer association is a one-to-many relationship. At the core of the hooks architecture there are actually two many-to-many associations:

· an event source (a data file, the operating system, the command prompt) triggers many actions and an action can be triggered by many sources

· each module performs zero or more actions and each action is performed by one or more module.

DESIGN AND IMPLEMENTATION

The focal point of our design is the Control Action concept. The Control Action provides the proverbial extra level of indirection we need to break up the two many to many sources-action-modules associations. The Action is an Observer of the event sources and at the same time an Observable
 that notifies the physics module to run their matching callback method. For example (Fig. 1) a "FileClosed" Action observes one or more event sources waiting for a file to be closed. When a source broadcasts a FileClosed message, the Action takes control of the execution flow and runs those modules that registered their interest in the "FileClosed" event. After all registered modules have been notified the Action returns control to the event loop. Each action instance has a distinct type

class Init :

 public ControlAction<Init> {};

class newRecord:

 public ControlAction<newRecord> {};

class Finalize :

 public ControlAction<Finalize> {};

Note the use of static polymorphism[4] to tag each ControlAction with its own type. Since the Action knows its type it sends a Typed Message [5] to the modules it schedules. Only modules that provide action handlers (callbacks) of matching type can be hooked to an Action. For example a typical physics module will implement three action handlers to hook up to the "Init", "newRecord" and "Finalize" framework states:
class HitFinder :
 virtual public TActionHandler<Init>,
 virtual public TActionHandler<newRecord>,
 virtual public TActionHandler<Finalize> ….
TActionHandler<Action> is an interface class with a "run" method that HitFinder must implement. For example TActionHandler<Init>::run() will be the "Init" callback method .

 HitFinder can not be hooked up to, say, the FileClose action: the compiler would issue an error message

"testSource.cc", line 32: error:
argument of type "HitFinder*" is incompatible with parameter of type "TEventObserver <FileCloseAction> *"

This is one of the main advantages of implementing the ControlAction as a Typed Message: this technique allows the compiler to check (to a large extent) the consistency of the actions-modules associations. At the same time a module has no compile-time dependency on the actions that it does not handle. In particular a new Action can be introduced at any time without recompiling any existing module. Finally this framework allows to configure at run time the event sources, the active actions and the module instances that hook up to them.
DISCUSSION AND CONCLUSION
The Typed Message pattern is not the most common choice for the hooks architecture implementation. For example, the dynamic proxy classes introduced in Java 1.3 [6] follow the classic "event registry" approach: a hook registry class maintains a table to match hooks and providers (actions and sources) and a table to match hooks and callbacks. Some of the more sophisticated HEP control framework [7] also use the registry approach to control module execution. These frameworks are based on traditional dynamic polymorphism and deal only with abstract hooks and callbacks. Hence a mismatch among hooks and callbacks types will only be uncovered at run time, using a potentially inefficient dynamic cast. On the other hand an event registry is more flexible than the typed messages we are using. One could for example dynamically load a library with a new set of actions into a running framework and start using them right away.

As always, the Control Action Framework is no silver bullet. There are certainly application domains (on-line monitoring and control come to mind) where a traditional event-registry system would be more appropriate. On the other hand we believe that the Control Action Framework is a better (safer and faster) choice for the simulation and reconstruction domains, which have a reasonably stable set of internal states and a large and fast changing pool of modules hooked up to them.

We have developed a functional prototype of the framework, which implements all the features we have described
. The prototype and more details are available from the project web site:

 http://electra.lbl.gov/Atlas/framework/
 controlstates/actiondesign.html

0

Figure 1. The Control Action Framework

Acknowledgments

We would like to thank for their comments, suggestions and criticisms: Jim Kowalkowski, Vincenzo Innocente, Charles Leggett, Pere Mato, John Milford, Dave Quarrie, Marjorie Shapiro, Lassi Tuura, Craig Tull and Laurent Vacavant.
References

1.
Sexton-Kennedy, E., “A Users Guide to the AC++ Framework” http://www-cdf.fnal.gov/upgrades/
computing/projects/framework/

2.
Cattaneo, M. et al, “GAUDI- The Software Architecture and Framework for building LHCb Data processing Applications” in CHEP2000 Proceedings, http://chep2000.pd.infn.it/abs/abs_a152.htm
3.
Gamma, E. et al. Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

4.
Barton, J. and Nackman, L. Scientific and Engineering C++: An Introduction with Advanced Techniques and Examples, Addison-Wesley, 1994

5.
Vlissides, J., Pattern Hatching: Design Patterns Applied, Addison-Wesley, 1998.

6.
Modi, T. "Understanding the Dynamic Proxy Classes in Java 1.3," Java Report, SIGS Publications, New York, NY, Feb. 2001.

7.
Kowalkowski, J. et al, “D0 Offline Reconstruction and Analysis Control Framework” in CHEP2000 Proceedings, http://chep2000.pd.infn.it/abs/abs_a230.htm

Tracker

Hit�Finder

Callbacks

Modules

Actions

Sources

FileClose

Finalize

NewRecord

� such an entity is sometimes called a Repeater.

� and a few more which have to do with the user interface and with the data model interaction.

