Effects of Limited Resources in 3D Real-time Simulation of an Extended ECHO Complex Adaptive System Model
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Abstract.  An evolutionary model of adaptive agents called ‘ECHO’ was proposed by John Holland.  ECHO is a first step toward mathematical theory in the field of complex adaptive systems.  Researchers in numerous disciplines have used the existing ECHO simulation both to model and to explain complex system behaviors.  This paper describes the effects of limited resources in a 3D simulation of an extended Holland ECHO model.  In this simulation, adaptive agents move about the ECHO terrain and interact with other agents in real-time.  Adaptive agents are bred using a genetic algorithm. The model’s environment contains limited resources, represented as symbols.  Elaborate relationships are developed by the agents to utilize resources through both competition and cooperation.  Researchers have a better tool by which to identify and explain complex adaptive system behavior by observing the emergence of complexity first hand. 

Introduction

The genetic algorithm (GA) has been more successful finding solutions to complex, nonlinear problems from the "bottom-up" than traditional "top-down" methods.  However, a challenge in the search of a complex solution space has always been forcing a GA to find something other than local optima.  This is caused by evolution’s tendency to quickly fill a niche and therefore effectively abandon the search for alternative solutions. 

A complex adaptive system (CAS) describes a model containing intricacy and fluidity found in natural systems.  As relatively simple agents interact in a dynamical setting, global behaviors will emerge.  These global effects emerge from more simple, local interactions.  CAS have typically been used to model biological and other natural systems, which are greatly different than the specific minimum/maximum search problems that the GA has traditionally been used to solve.

Complex and living systems are difficult to understand by top-down analysis.  Instead, they are better understood by synthesis [1].  Therefore, such models should be implemented as computer simulations [2].  Understanding of biological processes in particular is one of the primary purposes of studying CAS, however, the organization of nature in the broader sense is an even greater justification for such models.  CAS theory seeks to identify rules and processes which describe all complex systems, such as economies, ecosystems, animal and insect population behaviors, immune systems, embryogenesis, etc. Control or prediction of complex systems might become possible if “lever points” and mechanisms can be found which allow for a better understanding of these systems [3].

 It is hoped that by discovering the processes involved in creating complexity from adaptive simulation, the rules governing real living systems will be discovered [4, 3, 5, 6].

 Creating a system that resembles natural systems is a main purpose for implementing such a simulation. It is likely that the causes of emergence will be identified with such a ‘constructionist’ [6] tool, eventually leading to theory, and ultimately, to control and prediction of natural systems.

Additionally, it is often more cost-effective to develop many simple agents than it is to develop a single complicated agent [1, 7].  Therefore, any improved CAS techniques are valuable to industry and scientists in the hopes of evolving better methods to solve difficult machine problems and facilitate natural system simulations.

THE ECHO MODEL

The ECHO model was initially proposed by John Holland [3], father of genetic algorithms, as a vehicle for carrying out “thought experiments” on CAS.  Numerous ECHO computer simulations have been subsequently implemented.  These simulations capture the fluidity and complexity of Holland’s model better than pure cognitive exercises.  A screen image of the extended ECHO model discussed in this paper can be seen in Figure 1.

 Most ecological models omit evolutionary methods [8].   However, ECHO consists of a population of agents that are modified over time by a GA.  The agents adapt and evolve by selective pressures imposed by their environment, including other agents.
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     The agents' world in ECHO consists of limited resources in the form of symbols: {a, b, c, d, e, … }.  Competitive and cooperative relationships will be developed among agents in order to utilize these limited resources [8]. 

Non-linearities inherent in complex systems are difficult to model analytically [8].  Therefore, simulations such as ECHO facilitate the analysis of these phenomena.  Such a model will help to identify and clarify the properties of CAS, hopefully leading to mathematical theory.  

 ECHO agents must compete for limited resources.  Each site in the world might contain agents, an inflow of resources, or both.

Interactions are dictated by offense and defense tags, which are possessed by each agent.  The model possesses an implicit fitness measure, an important characteristic for inaugurating complexity [3, 9]. 

     ECHO was used by environmental researchers to model food web complexity [10].  In a paper describing this model, researchers were able to show that individual behaviors (i.e. local rules) influenced the global food web's complexity.  It was proved that explicitly deriving differential equations was not necessarily the most facile or accurate method for modeling food web complexity.

EXTENSIONS TO ECHO

Mechanisms and procedures were added to Holland’s basic ECHO model to emphasize spatially oriented characteristics and physical hierarchies inherent in natural systems. A primary goal of the initial ECHO design was stripping away unnecessary details while maintaining diverse complexity.  A principal goal of our extended model was retaining this design criterion.

     While Holland’s ECHO models are an extraordinary step toward CAS theory, they are far from replicating the complexity present in actual natural systems.  This lucidity was no accident, and helps to identify lever points and mechanisms of CAS by utilizing the simplest of approaches.  However, a critical role in the evolution of adaptive agents has recently been shown to be the environment [4, 9].  Therefore, perhaps the minimal addition of some environmental factors to ECHO are well justified.

The extensions to ECHO include agent resource recycling, resource adhesion tags, resource hierarchies, and resource decay. 

Figure 1. A Screen of the Extended ECHO Visualization
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Figure 2.  An Extended ECHO Agent Showing Tagging and New Exhaust of Resources.

The extended ECHO agent is pictured in Figure 2.  The agent contains the classic ECHO offense and defense tags, as well as a new exhaust tag, allowing resources to be recycled back in the environment by a method other than direct agent interaction.  The evolutionary model implemented here using a classic GA and tagged agents has led to the emergence of both competitive and cooperative relationships such as parasitism and symbiosis.

TABLE 1.   Evolutionary Techniques

	General Technique
	Implementation

	Randomness
	Mutation, Simulated Annealing



	Co-evolution
	Parasitism, Symbiosis, Competition, Cooperation, Arms Races



	Speciation
	Tagging, Multiple Populations


Conclusion

This CAS visualization tool allows the observation, interpretation and explanation of emergent and complex phenomena found in natural systems.  Such a tool allows researchers to observe complex interactions among simple agents, re-run interesting evolutionary models from a known initial condition, and observe the relationship of resources among adaptive agents.  Such a tool is a good first step in the identification, prediction, and control of emergent complex phenomena.
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