EMS: A Framework for data acquisition and Analysis

J.M.Nogiec, J.Sim, K.Trombly-Freytag, and D.Walbridge

Fermi National Accelerator Laboratory *, Batavia, Illinois 60510

Abstract. The Extensible Measurement System (EMS) is a universal Java framework for building data analysis and test systems. The objective of the EMS project is to replace a multitude of different existing systems with a single expandable system, capable of accommodating various test and analysis scenarios and varying algorithms. The EMS framework is based on component technology, graphical assembly of systems, introspection and flexibility to accommodate various data processing and data acquisition components. Core system components, common to many application domains, have been identified and designed together with the domain-specific components for the measurement of accelerator magnets. The EMS employs several modern technologies and the result is a highly portable, configurable, and potentially distributed system, with the capability of parallel signal data processing, parameterized test scripting, and run-time reconfiguration.

Introduction

Reusability is one of the great promises of object-oriented technologies, which can measurably increase productivity in software development. The objective of the EMS project is to provide reuse in the test and data analysis application domain, i.e., to replace a multitude of different existing systems with a single expandable system, capable of accommodating different test and analysis scenarios and varying algorithms.

The EMS uses a component-based framework that allows for reuse of both domain-specific and general- purpose components. Reuse of domain components provides for the highest possible level of reusability, because these components represent collections of related classes that work together to support specific domain-oriented functionality.

Architecture

[image: image1.png]The EMS employs a component-based framework that creates a foundation from which developers can build platform-independent applications. Within the system, components communicate through messages (events) exchanged over a software bus (Figure 1).

* Operated by the Universities Research Association under contract with the U.S. Department of Energy

[image: image2.png]

Figure 1. Communication over a software bus.

Various communication patterns are supported including unicast, multicast, and broadcast. The communication links/patterns are enforced by the router component and can be defined externally from the communicating components to form routing tables. Both contents-based (subscriber/provider model) and address-based communication is provided with both the source routing and routing tables methods. The bus conveys four independently routed categories of events: data, controls, debug information, and exceptions.

[image: image3.png]The core system consists of an architectural framework supporting communication and system assembly, and a set of core components.

All components are Java Beans connected to the bus via adapter objects. In order to send and receive messages over the bus, each component has to implement appropriate communication interfaces. These interfaces allow for exchanging of control, data, debug, and exception events. A hierarchy of abstract components implementing necessary interfaces provides a foundation for building all components.

Depending on their role in communication, components can be producers or consumers. A producer of one event can also be a consumer of some other event or events. Interactions between two communicating components are shown in the collaboration diagram (Figure 2).

[image: image4.png]
Figure 2. Component collaboration diagram.

Components

Components have well defined sets of states. Transitions between states are caused by the internal behavior of the component and can be enforced externally by sending appropriate control signals to the component. A standard set of states is shown in Figure 3.

The system components can be divided into the following categories: general-purpose core components (e.g., traffic monitor, property editor), application framework components (e.g., measurement framework), and highly specialized application components (e.g., harmonics measurement application).

Figure 3. Standard component states.

[image: image5.png]Some of the components are part of the graphical user interface whereas others have no visible interface. Notable core GUI components include the property editor and control panel and the traffic monitor (Figure 4).

Figure 4. The Traffic Monitor GUI.

The property editor and control panel enables run-time manipulation of components' properties, whereas the traffic monitor provides run-time information on bus communication. Notable measurement platform components include the graphical data display (Figure 5) and the numerical data display. These components are capable of displaying all data generated by any other system component.

Figure 5. The Graphical Data Display GUI.

Object Representation

The eXtensible Markup Language (XML) is a diverse language that can be customized to enable programmers to exchange and display information. By representing Java domain objects in XML one can achieve data exchange with non-Java platforms and have a portable and human-readable representation. XML can also be translated into an object model, and vice versa. These XML features convinced the authors to use XML as a standard way of externally representing objects in EMS. It has been applied to describe the system configuration, calibrations, parameters, and results.

Since the lifetime of the object frequently exceeds the life of the application process, one has to provide a mechanism to support object persistence, that is, the storage of objects in a non-volatile memory. In the application of EMS to measurement systems, object persistence is implemented via Object Design's Persistent Storage Engine (PSE Pro). This product provides a seamless binding to the Java language and drastically reduces the amount of code required to manage persistent objects. Other possible solutions to the object persistency problem include serialization, object databases, and relational databases.

XML descriptions of data and object parameters can be used to generate objects. Such information contained within an object can also be written to an XML document. In addition, objects can be stored in an object database and subsequently restored from the database. Thus, during its lifetime an object can exist in one or more of these forms: an XML document, an object, or as a persistent object stored in a database.

[image: image6.png]System Use

EMS-based systems can be assembled from pre-existing components without traditional programming. First, an XML description of the system is prepared using an XML editor, and then the system is generated according to this description. The XML description contains, in addition to definitions of components and their properties, routing information and definitions of the initial control signals.

The state of the system, including components' properties, can be manipulated at run-time and saved at any time as an XML document.

The next version of EMS, which is currently under development, will enable the user to define routing configurations graphically and allow for easy dynamic reconfiguration.

Conclusions

The EMS is an extensible, vendor-independent framework with characteristically shallow inheritance hierarchies. This framework allows for adding new services and new application platforms while maintaining a consistent set of APIs.

It replaces traditional application development involving coding of individual applications with assembly of systems from a set of available components. Therefore, it effectively separates the development process from the application building process and allows users with limited programming skills to create new or modified systems.

Integrated debugging, exception and event handling, dynamic reconfiguration, and run-time property manipulation uniquely characterize the core EMS framework.

ACKNOWLEDGEMENTS

The authors would like to thank John Tompkins for his continuous encouragement and support of the idea of component-based development and frameworks. Thanks also to Joe DiMarco, Hank Glass, Phil Schlabach, and George Velev for comments and contributions to the magnetic measurement platform built on top of EMS.

Adapter

Adapter

Adapter

Router

Producer/

Consumer

Consumer

Producer

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

_1034409456.doc
[image: image1.png]

_1034415769.doc
[image: image1.png]

