The Development of the ROOT Data Analysis System

René Brun

CERN – CH-1211 Geneva 23, Switzerland

Abstract. The previous generation of data analysis systems such as PAW had been designed as stand-alone executable modules to be used in the final stage of data analysis. This conventional model has been used very successfully to display histograms or generate histograms on the fly from some ntuple files. It had the advantage to be totally independent of any framework used in the simulation, reconstruction or physics analysis steps. With the advent of Object-Oriented programming, this simple model appears to be insufficient. The ROOT system has been designed to provide all the facilities in a system like PAW, but in addition has the ambition to provide a complete and coherent framework that can be used at all stages of data processing and well matched to the OO paradigm.

Introduction

The PAW model

When PAW was created in 1985, histograms were the lowest common denominator for data types. The HBOOK system had been used for many years and was a de-facto standard. The introduction of the so-called row-wise ntuples was immediately successful and called for one more step. Column-Wise Ntuples(CWN) were introduced in 1989 to optimize the access time to larger and larger files. CWNs were very similar to tables in relational data bases. An ad-hoc query mechanism was introduced and was improved multiple times to support more and more complex queries. The data types, however, were pretty simple, integers, floats and characters. The CWNs and histograms were created from data stored in sequential files with systems such as ZEBRA.

ZEBRA was designed in 1983 to support dynamic data structures of simple entities called banks. A bank was like a C structure but limited to the basic types, integers, floats and characters. ZEBRA was particularly useful to describe large collections of banks to build hierarchical or graph-like structures. The concept of structural and reference links was powerful enough to describe the type of physics event data in medium or large size detectors. CWNs were files created by each individual physicist. When the PAW system became more stable, CWNs were used as micro data summary files (microDSTs). Because PAW was a system available on most platforms and well supported, CWNs became quickly the standard data format for the final analysis stage.

 However, the PAW CWNs were not designed to describe the complex event structures that ZEBRA was able to describe. In addition, the CWN internal description tables could not scale to the Gigabyte range. Despite all these limitations, PAW has been THE standard data analysis system used by most experiments in the past decade. This success has been such that finding a suitable alternative has taken more time than initially expected in the new world of software based on OO languages.

MOVE TO OO PROGRAMMING

The first attempts to introduce the OO concepts in data analysis were made in 1989. These attempts were unsuccessful for many reasons:

· OO languages were not mature and not widely available.

· The performance of compilers could not compete with the Fortran compilers.

· The introduction of a new system requires that this new system provides all the facilities of the previous system in a stable and proven environment. This is a chicken and the egg problem. Convincing the silent majority to adopt a new tool or framework is a challenging work.

· The problem of Object Persistency had been totally underestimated or a wrong solution assumed.

· Last, but not least, the introduction of a new system could only be done with the strong support of a major laboratory with a long term commitment .

A major problem: Object Persistency

In the middle nineties, it was naively assumed that the solution to Object Persistency could be provided by commercial Object Oriented Data Base management systems. Systems like BOS or ZEBRA had been used successfully to manage large volumes of data, but these systems were perceived as difficult to use and to maintain. For a few years, Object Persistency was left in the hands of computer scientists or people with some experience in data management but a limited experience in data analysis. As a result, progress in understanding this difficult problem has been slow and highly controversial. Solutions to Object Persistency should have been thought with data analysis in mind. On the contrary, too much emphasis was put on the use of OODBMS systems to store event raw data or results of the first pass reconstruction. A few experts were designing systems to create large data bases. Processing data in the data base was assumed to be an easy task. The official policy was to delegate this function to a set of commercial tools. An unfortunate confusion was made between a data analysis system and a 3-D interactive visualization system. As a result, too much emphasis was put on the pure visualization side of the problem and tools capable of making queries in large OODBMS were not developed.

Towards the ROOT framework

Following our many years of experience with the development of the PAW system, we decided in 1995 to start the design and the implementation of a system capable of doing at least the same thing in an OO context, but also to serve as a complete framework from data taking to data analysis. During a few months, we learnt the basic ingredients of an OO system by implementing several variants of a histogramming package. We quickly implemented a rudimentary I/O sub system and also some very basic collection classes. It became rapidly clear to us that a more ambitious persistency mechanism had to be developed. There was no point in developing a system supporting only the PAW CWNs in a world dealing with classes and complex object hierarchies. OODBMS could have been the solution to our problem, but we were convinced that the corresponding proposed commercial tools were not appropriate for a flexible data analysis environment.

The User Interface Problem

One of the main tools in PAW was the command interpreter KUIP. Many man years had been invested in this package. Designed initially as a simple command line interface, KUIP was further developed to include many features of a programming language with control statements, loops, local and global variables. We had substantially underestimated the effort to develop a coherent system. With a growing number of users, it was clear that all the features of a programming language were requested at the interpreter level. We had seen so many KUIP macros with hundred or even thousands of lines that we were absolutely convinced that a modern data analysis system requires all the power of a high level programming language. It was out of question to develop our own language. It was also out of question to use a scripting language different from the main programming language. Because most users were going to write large scripts to analyze large data sets, we were convinced that the scripts had to be written in the same programming language than the main language used in the other stages of data acquisition, simulation and reconstruction.

[image: image1.png]
Figure 1. Estimated frequency of tasks as a function of the time taken to execute the task.

 With today’s desktop machines, it takes between a few seconds and one minute to compile and dynamically link a realistic analysis script. With computers becoming faster and faster, one may hope that in a few years from now, dynamic compilation and linking will become affordable for an increasing number of tasks. Having the same language for the interpreted and the compiled codes will be a tremendous advantage. On the other hand, nobody will trust results produced by a pure interpreted language. An interpreted language is fundamental for tasks that must be executed rapidly, such as short scripts edited very frequently or all the tasks called via the graphical user interface. Our goal was to combine the advantages of an interpreted and/or compiled language in one single framework. To achieve this goal, we had to develop a powerful object persistency system with as few limitations as possible to support the main stream proposed OO language C++. We were lucky to find an existing C++ interpreter CINT capable of parsing the complex C++ header files and to support a very large subset of the language interactively. We developed an extended Run Time Type Information (RTTI) used in the I/O system but also in many other places including the Graphical user Interface. This RTTI goes far beyond the C++ RTTI and looks more like the Introspection mechanism in Java.

[image: image2.png]
Figure 2. The ROOT RTTI is used by the persistency services and by all user interfaces.

A dictionary describing the classes (data and functions) is a fundamental requirement. It is the heart of a framework and is used to implement automatic or hand-coded converters, the automatic class schema evolution system, browsers, inspectors, the GUI context menus and the automatic documentation tools.

In the past, we developed ad-hoc dictionaries for data and functions, for example the Adamo DDL, the Zebra DZDOC for data dictionary or the KUIP Command Definition File for the functional part. When using an OO language, it is an advantage to use one unique dictionary to describe the data and function part of a class because the function arguments, and their return types require the same description than the data members.

BUILDING A MODULAR SYSTEM

Modularity is a buzzword with different meanings.. A modular system is sometimes presented as a system with many small and independent components. In general such systems do not have an object bus and the communication between the components is left to the application using these components. Systems with a deep hierarchy of components may be difficult to maintain because of too many interdependencies between the top level and low level modules. Is a system with well defined interfaces a modular system? Probably not, because too much emphasis is put on the interfaces at the expense of the object bus. In such systems, the interfaces may have long argument lists instead of well designed collections and object folders. An end user will see a system as modular if the structure is easy to understand, while a system developer will put more emphasis on the maintenance aspects, probably the two aspects being strongly related. A modular system can also be seen as a system easy to integrate into another system. The truth is that modularity is difficult to achieve, in particular in a rapidly growing system.

Modularity and Dependencies in ROOT

One of the main problems we had to face in building a complex and large system like ROOT (version 2.25 has about 650,000 lines of code) was to minimize the dependencies between shared libraries. ROOT consists of about 25 shared libraries or DLLs. A library may be dependent on another library if linking one library forces the linking of another library even if the application does not have a direct reference to this library.

The early versions of the ROOT system had many inter-library dependencies. This problem was rightly pointed out by many users as something to be fixed. We did this. In the current system, only a small set of base libraries (libCore) is required when creating e.g., Histograms in batch mode. Besides the decoupling of the graphics system many more abstract layers were introduced to decouple other parts of the system: histogram from its painter, the tree storage system from its query mechanism (treeplayer), fitting from Minuit, etc. Following this reorganization none of the lower level libraries depend anymore on higher level libraries. These changes improved besides modularity also overall system performance.
[image: image3.png]
Figure 3. The ROOT shared libraries. Arrows indicate dependencies. All libraries depend on the Core libraries.

Abstract Interfaces

One of the ways to improve modularity is to use abstract interfaces. Abstract base classes can be referenced by the low level libraries. Only applications using the real implementation of the derived classes will be forced to link with the corresponding library. For example, the libCore references the TVirtualPad abstract class (pad/canvas graphics interface), but only applications doing real graphics will need to link with the graphics libraries libGpad, libGraf.

[image: image4.png]
Figure 4. Some of the ROOT abstract classes and derived classes.

Quality Assurance

In a rapidly growing system, it is inevitable that the implementation of new functionality introduces new bugs or side-effects. By making early and frequent releases, users are introduced in the development loop and give a lot of feedback. Data analysis systems cannot be developed by a committee or a closed circle of developers. If the original idea and the system design is correct, users will soon use the system and will be happy to give feedback or even to contribute to some parts of the code.

There is a delicate compromise to be made between adding too much functionality, getting too many users, porting to new systems, writing the documentation, answering questions, etc. and minimizing the number of bugs.

In the figure below, we show our monitoring of the number of bugs that we fixed as a function of time. Our experience with ROOT or any previous system indicates that it takes at least five years to reach some stability. Thanks to several thousand users, ROOT is now close to reaching a stability regime.

[image: image5.png]
Figure 5. Monitored number of fixed bugs per thousand lines of code in each ROOT release during the five years of development.

REFERENCES

1. ROOT: http://root.cern.ch/
2. PAW: CERN Program Library Q121

3. KUIP: CERN Program Library I202

4. ADAMO: CERN Program Library Q190

5. ZEBRA: CERN Program Library Q100

