Panel Discussion: C++ in Scientific Computing(
Walter E. Brown, James Kowalkowski, and Mark Fischler
Fermi National Accelerator Laboratory

Batavia, IL 60510-0500

Abstract. We summarize the issues and concerns voiced by the ACAT conference attendees regarding their experiences using the C++ programming language and attendant methodologies.

Introduction

Because of the widespread acceptance of the C++ programming language in the physics community, this panel session sought to explore the ways in which the programming paradigms supported by C++ have impacted the community.

Two sessions were held, totaling nearly four hours, over a two-day period. In the first session, three speakers provided prepared presentations to serve as catalysts for subsequent discussions. Leo Michelotti provided Reflections on a Decade of OOP in Accelerator Physics, Marc Paterno shared his Experiences from Reviewing Scientific C++ Code, and Walter Brown presented C++ in Scientific Application: A Case Study. Each of these talks is separately documented elsewhere in these Proceedings.

Following the prepared talks in the first session, and continuing through the second session, panelists responded to comments and questions from attendees. Moderated by Walter Brown, the panel was composed of the following members of the physics computing community at Fermilab:

Amber Boehnlein, DØ
Elizabeth Sexton Kennedy, CDF
Jim Kowalkowski, Computing Division
Leo Michelotti, Beams Division
Marc Paterno, Computing Division

In addition, the original designer and developer of C++, Bjarne Stroustrup, served as a distinguished member of the panel and also gave a plenary address on modern C++ (Speaking C++ as a Native) between the two panel sessions.

The remainder of this document will summarize the main themes and viewpoints that were expressed. We extend thanks to all of the panelists and attendees for their participation.

PREPARED Questions

To provide a starting focus, the following questions were posed by the moderator, and attendees were invited to comment:

· What features of the C++ core language and of its library have you found most useful and/or most problematical?

· How has C++ aided or hindered your transition to object-oriented and generic programming methodologies?

· How have your software designs been affected by the wide variations in the quality of C++ compilers, libraries, and debugging tools?

· In the context of your experience with C++, to what extent are the startup costs and ongoing overhead of:

· O-O design/implementation, and

· Generic programming techniques

now paying off with respect to the benefits such methodologies provide?

Attendees and panelists addressed these and other concerns in a variety of contexts during the subsequent discussion. The following summary outline is organized by topic, not chronologically.

Discussion summary

Overview

Essentially all attendees’ comments fit into the following recurring topics, each of which is separately summarized below.

· Frustrations with the language

· Performance

· Desired C++ features

· Use of language and library subsets

· C++ is difficult

Frustrations with the Language

Issues:

a) Decomposing a problem is difficult to do properly

b) Requires design time

c) Results are not available quickly

d) Relatively few experts are available to help

e) Appropriateness of algorithm/data separation

Responses:

a) Good design yields flexible, maintainable, and correct code

b) Prototyping is very important; distinguish it from production code

c) Striking a balance in separating concepts is difficult; extremes are usually bad

Performance

Issue:

Fortran code apparently executes faster than C++

Responses:

a) Performance testing is difficult; one must compare very similar things

b) Cannot ignore performance when designing and implementing code

c) Well designed code is generally easier to optimize

d) Correctness is more important than speed: extremely fast programs that produce erroneous results, even part of the time, are still incorrect!

Desired C++ Features

Desiderata:
a) Persistence

b) Reflection (enhanced object-querying)

c) Garbage collection

d) Compiler optimization hints

Responses:

a) The technology for some of these issues seems not mature enough yet; certainly there has been no Committee consensus to date (standards require this)

b) Not pushed hard by groups in the Committee

c) Everyone is welcome to join the Standards Committee and/or to submit and defend proposals; our community seems to be underrepresented

Use of Language and Library Subsets

Issues:

a) Exceptions (cost)

b) Templates (compiler support)

c) Algorithms are “weird”; they’re expressed in a different style than many are accustomed to

d) Feature fear in general

Responses:

a) Take a fresh look at exceptions and templates; much improved compiler support nowadays

b) Turning off exceptions is not using Standard C++

c) Algorithms allow direct expression of concepts in code

d) Algorithms are efficient

i) Much effort has gone into codifying the best available algorithms

ii) Their use allows many opportunities for optimization

e) Avoiding features misses out on some of the real strengths of C++; the weirdness will go away with increased familiarity; language features are there for a reason

f) Code to the Standard, not to a subset, because you’ll end up reinventing the features you’re avoiding

C++ is Difficult

Issues:

a) Abundant Fortran expertise not yet available with C++

b) C++ is difficult to read

Responses:

a) Fortran skill and code was, in hindsight, really not very good

b) Poor C++ is hard to read, however good C++ code matches the concepts and is straightforward to read and maintain

c) Rely on others’ code, concentrate on your application; there’s no need to understand every detail

conclusionS

A few major items emerged from the nearly four hours of discussion. Much discussion centered on various proposed experiment-wide subsets of C++, typically to ease the transition for inexperienced experimenters. However, the panel generally agreed that this was poor policy. “Code to the Standard, not to any subset” seemed the prevailing wisdom.

There was also significant discussion regarding language and library features perceived to be missing from C++. The panel concluded that the scientific community is under-represented on the C++ Standards Committee, and encouraged attendees’ institutions to join and participate in order to make their needs known.

Panelists generally encouraged a fresh look at modern, standard C++. Support for object-oriented programming, generic programming, as well as traditional procedural programming is a strength of the language. Programmers should use those features that are most appropriate for solving their problem.

(This written summary is largely based on the extensive notes taken by Jim Kowalkowski. as well as on his concluding presentation.

