Event Bookkeeping for CLEO-3

Jon J Thaler

Physics Department, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801

Abstract. Most aspects of data analysis software share a common bookkeeping task, maintaining relationships between members of two sets of objects. To simplify the development and maintenance of this bookkeeping, CLEO has implemented a sharable package that implements all of the commonly used tools. This allows the physicists to concentrate on data analysis.

MOTIVATION

Most aspects of data analysis software share a common bookkeeping task, maintaining relationships between members of two sets of objects. For example, the tracks created by pattern recognition algorithms must be correlated with the detector hits that contribute to them. Conversely, it is important to be able to determine which tracks contain a given hit. Similar bi-directional correlations must be established and maintained in vertex reconstruction and for event kinematics. Data analysis is the identification of increasingly complex relationships within the data.

It would simplify the software environment if these relationships were managed by a single sharable package. The package would only have to be written and debugged once, and code writers would be freed to concentrate on the algorithms. To this end, the CLEO collaboration has written software, called Lattice, which is designed to perform the bookkeeping tasks described here. Lattice is written in C++, so this paper uses C++ terminology.

Specifications

Lattice is designed to be flexible and to have minimal impact on existing code. This makes it more likely that Lattice will be used. Lattice's internal data storage scheme is transparent to the user.
Functionality

The user can add and remove links between objects (e.g., hits and tracks). Data (the Link data in figure 1) can be associated with each link (e.g., hit contributions to track 2). The user can retrieve a list of all objects to which a given one is linked (e.g., all hits on a given track), or all the objects which share links with a given one (e.g., all tracks which share hits with a given track). The interface is simple, and all data is returned in STL vectors. Constraints can be specified that prevent unwanted multiple links between objects.
Flexibility

Any two sets of data can be linked. Link data is user definable. Lattices don’t interact, so objects can belong to multiple Lattices. A Lattice can persist over a write/read data cycle, because it does not use memory pointers. The Lattice can be used even after the data it links has disappeared (e.g., if hits are not saved after track reconstruction).

Minimal Impact

The use of Lattice incurs only a small performance penalty. Lattice is optimized for fast data retrieval, while making and deleting links is more expensive. Our experience is that this matches users’ needs.

Lattice requires little rewriting of existing code. The only behavioral requirement is that data objects have identifiers, used by Lattice to distinguish objects. CLEO data objects already have this property.

Figure 1 shows the general structure. Nodes are invisible to the user. They maintain the correspondence between user data and the Lattice.

Examples

It is simplest to explain the Lattice, especially the value of connectivity constraints, with some examples.

Track Finding. Hit sharing not allowed.

The left data is the tracks; the right is the hits. Eight hits lie on three tracks. Link data is the hit contribution to 2. Disallowing multiple links on the right (see figure 2) imposes no hit sharing.

Track Finding. Hit sharing allowed.

Without the connectivity constraint, tracks can share hits, as shown in figure 3. Resolution of shared hit ambiguities can be deferred until later in the analysis.

Calorimeter Clustering. No overlaps.

Here, the left data is the clusters. Figure 4 shows the situation, supposing that clusters have cores and halos.
Calorimeter Clustering. Overlaps allowed.

By relaxing one connectivity constraint, clusters can share halos and cores, as shown in figure 5. This simple model does not distinguish halos and cores. To disallow core sharing while allowing halo sharing would require two Lattices, because a Lattice connects two kinds of objects, not three.

[image: image1.bmp]
Figure 1. Structure of Lattice. User Data is the data to be linked. Link Data is the data associated with a link. It is a user-defined class. Identifiers do not need to be int. They do need to be sortable and unique (within a set).

[image: image2.bmp]
FIGURE 2. Track finding with no hit sharing. “Many” means multiple connections are allowed. “One” means single connections only.
FIGURE 3. Track finding with hit sharing. One track steals hits from the others

FIGURE 4. Cluster finding with no overlaps. The link data describing cores and halos must both fit into the same user defined class.

FIGURE 5. Cluster finding with overlaps. Two clusters share a halo.

FIGURE 6. Find objects on the right that are linked to the given one on the left..

FIGURE 7. Find objects on the left that share links with the given one on the left.

Interface

Due to space constraints, I only show some representative interface operations. A complete set is implemented.

Make a new Lattice:
 pLattice = new
 Lattice<LeftData,RightData,LinkData>
 (Connectivity)

Lattice is a class template. You specify the left, right, and link data types, and the allowed connectivity. There are 16 possible connectivity combinations, “one” or “many” at each of the four positions (see, e.g., figure 2).
Make a new link:

 pLink = pLattice->connect
 (LeftID, RightID, LinkData&);

Returns a pointer to the new link. Zero is returned on failure (e.g., violation of the connectivity constraint). The link data is copied into the link. Lattice does not take ownership of the user’s data.

Remove an object from a link:

 pLink = remove(LeftID, Link*);

A null pointer is returned on failure (e.g., the object was not a member of the link).

Find objects that are linked to a given one:

 vRight = pLattice->
 vRightGivenLeft(LeftID);

vRight is an STL vector of RightIDs.. This will tell you, for example, which hits lie on a given track. See figure 6. The verbose nomenclature is a consequence of the fact that LeftIDs and RightIDs might be the same type.
Find objects that share links with a given one:

 vLeft = pLattice->
 vLeftGivenLeft(LeftID);
This will tell you, for example, which tracks share hits with a given one. See figure 7.

Return a reference to a link’s data:

 linkData = pLink->linkData();

You have write access to the link data. This allows you to update it when objects are added or removed.

Status

Lattice has been an integral part of the CLEO-3 software environment for two years. It is stable code. Lattice is being considered for use by two other experiments. It is not quite plug-and-play, but close.

Complete documentation is available on the web at
http://web.hep.uiuc.edu/home/jjt/Lattice . The source code is available (email: jjt@uiuc.edu). I will be happy to help other experiments implement Lattice.

Acknowledgments

This work was partially supported by the US Department of Energy under grant DE-FG02-91ER40677.

core

halo

core

One

Many

Many

Many

2

8

1

2

1

Hits

Clusters

User data

.

.

.

N

2

ID = 1

.

.

.

M

2

ID = 1

Link data

Link data

.

.

.

Link data

User data

Lattice

Left nodes

Right nodes

Links

One

One

One

Many

2

8

1

3

2

1

2

Hits

Tracks

Not allowed

1

2

3

Many

One

One

Many

2

8

1

3

2

1

2

Hits

Tracks

Clusters

halo

core

halo

core

One

Many

One

Many

2

8

1

2

1

Hits

3

2

1

