More Performance Results and Implementation of 

an Object Oriented Track Reconstruction Model 

in Different OO Frameworks

Irwin GAINES  

Fermi National Accelerator Lab, Batavia, IL 60510, USA 

Sijin QIAN  

Brookhaven National Lab, Upton, NY 11973, USA

Abstract.  This is an update of the report about an Object Oriented (OO) track reconstruction model, which was presented in the previous AIHENP'99 at Crete, Greece. The OO model for the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. It has been coded in the C++ programming language and successfully implemented into a few different OO computing environments of the CMS and ATLAS experiments at the future Large Hadron Collider at CERN. We shall report: (1) more performance result; (2) implementing the OO model into the new SW OO framework "Athena" of ATLAS experiment and some upgrades of the OO model itself.

Introduction

In AIHENP’99 at Crete (Greece), we had reported an Object Oriented (OO) model [1] for track reconstruction (with simultaneous pattern recognition and track fitting by the Kalman filtering method [2]) which was initially designed and coded in the C++ programming language in its first version in 1995 for the CMS experiment at the Large Hadron Collider (LHC) at CERN. Since 1995, along with the development of C++ language itself and our understanding about the OO concept, the model has been re-designed (or partially) a couple of times. Since 1998, the OO model and its C++ code have been successfully re-used in ATLAS (i.e., another major LHC experiment), where it has been implemented into 3 different ATLAS software environments one after another: i.e. (1) the level-2 trigger OO reference software framework, (2) the C-trig (a C-language based software framework delicate to the trigger performance study), and (3) the new ATLAS offline OO architecture “Athena”. The latter two are new since AIHENP’99.
The history of the OO model (up to the international conference “Computing in Nuclear and High Energy Physics (CHEP’2000)” at Padova, Italy) has been documented in [1,3], where the main features of this model have been summarized as: (a) Class design according to the OO paradigm. The class design is based on the proven data concepts in HEP track reconstruction, so that hopefully it can be rather easily adopted by non-expert class users. (b) The OO model had successfully re-used some well encapsulated FORTRAN modules; it later had been converted into a pure C++ package in a straightforward manner. (c) The OO model is flexible enough to be re-used in different HEP experiments, only the implementation of layer class is different.
In this short report, Section 2 describes the new features of the OO package and the new performance result since AIHENP’99; Section 3 outlines the implementation of this OO model into the ATLAS new software environment “Athena”. More details about the OO model can be found in [3].

NEW FEATURES OF THE OO MODEL AND NEW PERFORMANCE

The latest class diagram of the OO model for track reconstruction is shown in Fig.1. The original OO 
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                  Figure 2.  Reconstruction of the B (  mass 

                               hypothesis in the ATLAS Level-2 trigger 

                               using the Kalman filtering method    

FIGURE 1. Class diagram of the OO tracker model

	TABLE 1.  Statistics of the Benchmarking Measurement (for B-physics events at low luminosity)

	PT min (Gev/c)
	TRT Seeded
	Pixel Seeded

	
	Number of seeds          Execution time (millisecond)
	Number of seeds       Execution time (millisecond)

	0.5
	<114>                           <112>/event
	<36>                          <19>/event

	1.0
	<55>                             <54>/event
	<16>                          <9>/event


model was stand alone, as it predated the development of OO software frameworks in both experiments, CMS and ATLAS. Since 1999, CMS developed a powerful reconstruction framework known as ORCA. After all necessary functionalities for input objects in ORCA became standardized in autumn of 1999, we preliminarily integrated the OO tracker model into ORCA by inputting the ORCA reconstructed hits to the model and reconstructing tracks. ORCA was continuing to develop rapidly during the past year, so the further integration has been paused to wait for the final ORCA detector and track classes. In ATLAS, in the summer of 1999, another seeding method has been implemented which uses the seeds produced by a pixel detector package and starts the Kalman filtering process from the inner-most position outwards. This results in a better performance of the OO model due to the preciseness of the pixel hits. Then, the energy loss correction was implemented at the end of 1999. Also, in the second half of 1999, the OO model had been integrated into another ATLAS level-2 trigger framework “Ctrig” which is C-based but can produce many ntuples to study the trigger performance. In Ctrig, this OO model has been extensively tested. The new performance result has contributed to the ATLAS 

Trigger/DAQ Technical Proposal [4] published in 6/2000. Despite the difference among two LHC experiments and different software environments, we could put the I/O code in two encapsulated functions, then the implementation structures for different environments are very similar.
Among many new performance results documented in [5], due to the limitation on the article length, here we only show some typical results about the execution speed (Table 1) and an example of B-physics study in the channel B (  (Fig.2). The standard data sets (for testing various algorithms) are single-track (’s, ’s and electrons at different energies) events and B-physics events at low luminosity. The computer used is the 600 MHz AMD Athlon under Linux. The memory usage of the OO model is in the order of 10 Mbyte.

IMPLEMENTATION  OF THE OO MODEL INTO ATLAS NEW OO ENVIRONMENT 

Since the middle of 2000, ATLAS launched a new OO framework “Athena” based on the Gaudi architecture of LHC-b experiment. The design principles of Gaudi (Athena) include (a) separation 

	Figure 3.
Structural diagram of Athena implementation of the OO model
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between “data” and “algorithm”, (b) three basic categories of data (i.e. event, detector and statistical data) and (c) separation between “transient” and “persistent” data, etc. The “Transient Data Store (TDS)” provides a means to promote the proper modularization of a package. By utilizing the TDS, we have decomposed the OO tracking package (with the name “SCT-Kalman”) into a scheme (Fig.3), where the geometrical, the seeding and the 3-D space oints parts have been factored out. The intermediate objects (e.g. layers, 3-D hits and seeds, etc.) are passing through the TDS before being input into other modules. By this decomposition, a builder module can include several different modes that can be selected in the run time by the jobOptions file (a kind of run-time data control card). For example, the space point builder can have different space points building methods or an ASCII file reader, etc.; the seed builder can have TRT, pixel, muon or calorimeter seed modes, etc. Also, this scheme leaves room to accommodate the calibration correction (in the space points builder) and the alignment correction (in the layer builder) in future.

It is worthwhile to mention that along with the accumulation of our implementation experience and the improvement on the features of software framework, we are able to implement the OO model into a new OO environment in a shorter and shorter period. For instance, among 3 software frameworks in ATLAS experiment, it took a couple of years (i.e. 1998-1999) to implement the OO model into the ATLAS level-2 trigger OO reference software framework; several months (i.e. 8/1999-12/1999) into the Ctrig framework; and just a few days (one day in 8/2000 and a few weekends in 9/2000) into the ATLAS’ new Athena framework preliminarily.

Summary and prospectS 

We are moving towards a realistic OO track reconstruction model for HEP experiments. Its memory usage is moderate, its track finding efficiency is satisfactory, and its execution speed is approaching the level-2 trigger requirement. It can be used in different HEP experiments and software frameworks with only minor modifications.
The integration of the OO model into ORCA and Athena are just the beginning, more complete implementation continues. Then more performance studies in different environments can be carried out.
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