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Abstract. We have implemented access to beam physics models of the Fermilab accelerators and beamlines through the Fermilab control system.  The models run on Unix workstations, communicating with legacy controls software through a front end redirection mechanism (the open access server), a relational database and a simple text-based protocol over TCP/IP.  The clients and the server are implemented in object-oriented C++.  We discuss limitations of our approach and the difficulties that arise from it.  Some of the obstacles may be overcome by introducing a new layer of abstraction.  To maintain compatibility with the next generation of accelerator control software currently under development at the laboratory, this layer would be implemented in Java. We discuss the implications of that choice. 

Introduction

The Fermilab accelerator control system was designed long before it was thought that behavior of these machines could be accurately modeled.  In recent years, we have been able to wrap our physics modeling effort in such a way that our legacy control system can present these models to the users.  These models are accessed through the Fermilab control system in four ways: The Online Model (OLM), the Open-Access Model (OAM), standalone applications and a database of physics parameters.  

The OLM and the OAM rely on a computation server to do the relevant beam physics calculations.  This server is connected to the client via TCP/IP.  In addition, the OLM uses the database for transferring efficiently the calculation results from the server.

But our legacy wrapper has some limitations.  Therefore, a standalone application framework for fitting and tuning machine parameters has been developed using our models [1].  This framework uses open software packages for the display.  It was thought that much of the functionality of this effort could be incorporated into our basic modeling structure.  This has not been achieved.

These models have not gained acceptance from our target audience, the physicists and operators in the Fermilab control room.  First and foremost is that these models, while completely accurate, are not as robust as they need to be; for example, there is no real error recovery.  Furthermore, the legacy framework in which application programs must be built limits the flexibility of these applications.  

There is an effort underway to replace the controls application interface with a Java-based framework.  With the appropriate specifications, it is possible to influence the outcome of this new system in order to make online models more practical and acceptable.

Computation Environment

The online models rely on the MXYZPTLK/Beamline C++ class suite [2], developed at Fermilab.  Briefly, MXYZPTLK provides a differential algebraic framework for performing particle propagation through a beamline to any order. The programming interface to use high-order calculations is the same as the first-order calculations, which are relevant to operations. Beamline provides classes for represent​ing beam line elements in a machine, and the various ways to combine these elements into hierarchical structures. The object-oriented nature of this package has allowed significant flexibility in generating practical applications.  The applications presented here are an example of this flexibility.

All accesses to our online models use the same machine description and the same calculation structure. Thus, a question asked of the model through one of the access points yields the same answer as from another access point.  Furthermore, if more details are needed, a special-purpose offline application can be quickly con​structed from the same classes. 

The computation models run on dedicated Unix workstations. Communication between the legacy (VMS) system and the Unix servers is done via an ASCII-based TCP/IP network protocol.

Physics Analysis Clients

Online Database of Physics Parameters

The most widely used access to beam physics computa​tions has been the static databases of machine and beam physics parameters.  Calculating the data for these tables is an important aspect of debugging the beam physics model for a new machine.  C-callable functions have been created as part of the control system API to access these tables without direct knowledge of SQL.  Many online applications at Fermilab rely on these tables. 

The sorts of data present in these database tables are the physical names, positions and alignment of the beam line elements in the lattice and the beam physics, like the orbit, Twiss functions, R-matrix and covariance matrix.  These physics parameters are available at every element in the lattice of each machine.

Online Models

As models are developed for the various machines, the classes that perform the relevant beam physics calculation on this model are transferred to the server.  Simultaneously, the classes on the operator consoles are extended to handle the specifics for this new model Once a model is deemed to be ready, it takes a day or two of work to perform this step and create a full-fledged online model.

An example of the output of the online model in action for the 8 GeV transfer line between the Fermilab Booster and the Main Injector is shown in Figure 2.
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FIGURE 2.

 The Online Comparison between the model 

of the MI 8 GeV line and the BPM readings for it.

 


Open Access Models

A feature of the current Fermilab control system is the ability to change a user console’s connection from the real hardware to an internal model.  This type of model-based redirection is referred to as an Open Access Model (OAM).  It was conceived as the simplest possible redirection mechanism available.  At least two desirable results are accomplished through an OAM: to test algorithms in online controls applications and to provide a meaningful way to train operators. OAMs have been written in C++ for the Fermilab Main Injector and the Recycler Ring.

The emulation of the control system and of all the devices in a machine is handled in the OAM.  An OAM performs essentially two actions: 

1. To accept settings and interpret these settings into changes in the simulated equipment in the model, and

2. To provide model-based beam sensor readings.

Regular applications are used while the console is redirected.  The user is alerted to the redirection by a prominent yellow line throughout the application display.

Fitting and Tuning With Standalone App

A different access into our modeling structure has been created for the Recycler Ring (RR). The RR is based on permanent magnet technology.  The tune is changed by adjusting the strength of five electromagnetic quad families in a special insertion called the “phase trombone.”  A fitting scheme has been implemented to enable this calculation.  Emphasis has been placed on allowing the user to guide this inherently nonlinear fitting process in a convenient way.  The VMS/Unix client/server has been bypassed: the application runs directly on the Unix server and the display appears on the controls console.  This work is discussed in another paper at this conference [1].

This program is a specialization of a general-purpose fitting and tuning program.  It has been constructed to facilitate the calculation at hand.  The general program uses the same lattice specifica​tions and calculation engine as the online models.

Limitations

The community at Fermilab has not accepted the present system of online models.  There are many reasons for this, and several things can be done to fix these problems.

The Fermilab beamline and accelerator control system is very old and generally is considered to be cumbersome for application development.  While the C++ compiler under VMS is good, the hardware on which these programs are forced to run (VAX) is severely out of date.  Furthermore, the application program interface (API) for the control system has essentially no abstraction, data hiding or polymorphistic capabilities; in other words, it is not object-oriented.  Thus, developing online models in this environment has proven to be time consuming and challenging, out of proportion to the resulting functionality.

As for the model redirection mechanism, we have proven that it can be made to work.  We have even constructed an OO framework for dealing with the programmatic complexities.  But since the level of the redirection is very close to the hardware, one has to mimic the lowest-level hardware commands and bit patterns in order to realize the redirection.  For example, in order to measure the FMI turn-by-turn through model redirection, the model has had to learn which bits were to be toggled in order to turn on the one-turn kicker that initiates this measurement.  Moreover, the classes that mimic the BPM readbacks also have had to reproduce the 8-bit readings that the hardware is expected to generate.  This is just for the tune measurement—other measurements would require similar effort to be made to work in redirection.  And it is customary at Fermilab to change the way the hardware behaves in order to meet our programmatic goals, and these changes must be reflected in the redirection model.  It has not been practical to keep the redirection in this context up to date.

Possible Directions

If this effort were to continue, it would be necessary to change the architecture of the control system in order to facilitate these sorts of model couplings.  It is our belief that there would need to be a hierarchy of object-oriented classes developed that represented both the physics concepts and the engineering systems embodied in the machines.  An effort would need to be made to develop a level of abstraction within the controls environment that deals with these concepts.  Then both the model redirection and the connection of real measurements to model predictions could be realized.

For example, one can imagine a general “BeamPosition” abstraction that would yield classes that represent the readings from BPM hardware.  This abstraction should have a “model predicted” field, representing the design value of the position at this location.  One could define an “Orbit” class that only has knowledge of the abstract BeamPosition class.  The relevant engineering details would not be necessarily compromised since the concrete classes, which implement the BeamPosition abstraction, could have as much detail as the engineer feels is necessary.  It is our opinion that a finite set of these abstractions (actually, these should be, in Java terminology, interfaces) can be invented to fully describe the equipment that is used at Fermilab.  It would not be an easy job, but it would lead to enormous improvements in the flexibility and the robustness of the facility.

Having established this level of abstraction, one could then implement redirection to a model in a straightforward, efficient and practical manner.  Also, these abstractions could have hooks for tying in model predictions, for example, the “design” orbit idea described above.

Our controls personnel are in a position to develop these ideas at the same time as they develop ideas on how to use the Java language properly in this context.

Conclusions

OLMs exist at Fermilab for the following machines: Main Injector 8 GeV Line, FMI, RR, Tevatron fixed target mode, Tevatron collider mode and the Antiproton Source Accumulator.  New OLMs have been added quickly.  Open-access models exist for the FMI and the RR.

The OAM has not been applied to more of our systems because the level at which redirection occurs is entirely too close to the hardware.  In order to make the OAM work, it must be known in great detail how a front end replies to a specific type of data request.

Our long-term goal is to provide a consistent environ​ment to construct models and to do beam physics calcula​tions.  We are prepared to track the upcoming changes in the control system to keep these models viable.

References

1. “A Beamline Matching Application based on open source software,” By J.-F. Ostiguy, these proceedings.

2. “MXYZPTLK version 3.1 User’s Guide: A C++ Library for differential Algebra,”  By Leo Michelotti, Fermilab publications #FN-353-REV, on web as   
    http://fnalpubs.fnal.gov/archive/1995/fn/FN353R.html



� EMBED Word.Picture.8  ���






























































* Work supported by the US Department of Energy, contract # DE-AC02-76CH0-3000.






[image: image2.wmf] 

FIGURE 2.

 The Online Comparison between the model 

of the MI 8 GeV line and the BPM readings for it.

 

_1035984895.doc
[image: image1.png]& Gev Line PN Plot
Vertioal







FIGURE 2. The Online Comparison between the model of the MI 8 GeV line and the BPM readings for it.












