Tailorable Software Architectures in the Accelerator Control System Environment

Igor Mejuev*, Akira Kumagai* and Eiichi Kadokura¶
*PFU Limited, 658-1 Tsuruma, Machida, Tokyo 194-8510, Japan

¶High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

Abstract. Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user tailorability has been extensively researched in applied computer science from HCI and software engineering perspectives. Tailorability allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user tailorability in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. In this work we introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of distributed monitoring application for 12 GeV KEK Proton Synchrotron as an example. The software prototypes used in this work are based on a generic tailoring platform (VEDICI), which allows decoupling of tailoring interfaces and runtime components. While representing a reusable application-independent framework, VEDICI can be potentially applied for tailoring of arbitrary compositional Web-based applications.

Introduction

End-user programming is considered as a promising approach capable of reducing maintenance cost and achieving greater flexibility of software products. In this context the architecture of end-user tailorable systems allows modifying the application within the context of its use and can be considered as a methodology of practical implementation of end-user programming paradigm. The application of runtime tailoring can solve the contradiction between dynamicity of requirements and inherent complexity of software present in particular application domains.

An accelerator control system is an example of such a domain – the dynamicity and flexibility are the essential requirements for scientific experiment environment, however the amount of hardware and I/O channels involved demands applications of computer control to achieve the consistency of experimental setup. Thus, the accelerator control system environment stipulates interdisciplinary research including the methodology of end-user programming in order to handle the problems of large-scale control software development.

The one way to deal with this problem is to apply the techniques of domain modeling and form-based programming [1, 2], however this approach would probably require certain skills of the end-users, which is not always acceptable. On the other hand our experience with software maintenance for experimental physics shows that the most frequent modification requests are targeting relatively small GUI of application logic updates. These modifications could be done by end-users themselves if the appropriate tools are provided.

In this paper we propose to introduce the notion of tailoring interface in the process of developing applications for accelerator control system environment. A feasibility evaluation was performed with Web-based monitoring applications for 12 GeV Proton Synchrotron at KEK. Using this example we consider the differences between tailoring and authoring interfaces and underline design and implementation issues for developing of tailorable applications in the accelerator control domain. The application of technology of end-user tailoring can significantly reduce the time required to perform software maintenance at the time of control hardware upgrades and correspondingly decrease the overall system maintenance cost.

runtime Tailorability

Generic motivations for implementing tailorability in software systems are constituted by dynamicity and diversity of users’ requirements. The dynamicity can be derived from the inconsistency between waterfall software development model and the development process taking part in the real world. In accordance with evolutionary design methodology [3] the requirements are not given and therefore can not be strictly analyzed. The diversity of requirements arises from the need to satisfy the requirements of heterogeneous groups of users within the single application. The possible solution to this problem is to let the users perform the required modifications by themselves. However, practical implementation of this solution requires a design to allow the system modifications at runtime and a deployment solution capable of differentiating the modifications made by each user.

Runtime tailoring is distinguished from both use and development (authoring), however it retains certain commonalties with each. An authoring interface is typically used by developers of a computer system. The interface can utilize techniques such as visual programming or form-based programming, in order to speed up the process of development. The authoring system is required to provide full control of the application and available APIs, display the composition of the system in a consistent way, and provide integration with runtime and deployment modules. In the case of authoring the software process comprises iterative steps such as deploying the application’s template, identifying the required modifications through the communication with users, modifying the application, deploying the new version, and so on. Typically the users and developers of the system represent distinct and geographically distributed groups.

The intent of tailoring interface is to provide the users with the possibility to customize an application to their particular needs and work situation. An example of tailoring interface is a text processing application with customizable toolbar. In the case of tailoring, the modifications should be done by end-users and within the execution environment. For shared applications or applications deployed on the Web the system should support the persistence and authentication of changes made by each user.

The differences between the authoring and tailoring interfaces can be summarized by the following criteria: audience (who), usage pattern (how) and context (when).
tailorable remote monitoring Application

Online monitoring application for KEK Proton Synchrotron should provide display for the beam parameters, accessible in the Java applet environment. The required degree of tailorability for the monitoring application is identified as the possibility for the end-users to dynamically reassign mappings of GUI components to I/O channels and customize visual preferences (color, layout) for the components. Particular I/O channels are required to display permanently, so that the tailoring functionality should be disabled for the corresponding GUI objects. The layout of the remote monitoring system is represented in the Figure 1.

[image: image1.wmf]InTouch

I/O server

Wonderware

Scout Outpost

Java Clients

KEK backbone Ethernet

PLC Network

Figure 1. Monitoring System Outline.

PLC data are available through the commercial software – InTouch I/O server through NetDDE connections. The Scout Outpost provides CGI interface accessible from Web-based clients. Having received a CGI GET query, the Outpost retrieves the data from I/O server by NetDDE and replies the results in the form of HTML table, including I/O tag names, error codes and current values for the tags.

The monitoring application was implemented using VEDICI – a generic tailoring platform for Java Beans, which allows decoupling of tailoring interfaces and runtime components. A VEDICI application is represented as a nested hierarchy of compositional markup specifications (Bean Markup Language) with the possibility to associate an individual tailoring component with each specification. This approach allows integrating multiple tailoring interfaces within an application instance.

The implementation of dynamic monitoring components was reused from earlier implementation made with Java 1.0 for the JLC X-band High Field Experiment [4, 5]. The data update is performed by a dedicated component, which wraps Scout Outpost interface and provides a refresh manager for dynamic monitoring components. The update manager performs data polling by sending batch requests to the Scout Outpost server. The monitoring application includes an authoring tool for developing new applications and reusable visualizers applicable for customization of the applications at runtime (Figure 2).

[image: image2.png]
Figure 2. Tailoring Interface.

The visualizers provide the possibilities to browse the structure of an application (HierarchyBrowser), visually edit the components’ properties (PropertyEditor) or modify the application at the source code level (SourceEditor). The runtime allows integrating visualizers within an application instance and, additionally, tailoring can be disabled for particular components of the application by assigning a null visualizer (VisualizerStub).

The users can save the customized applications in a server-side repository with authorization by username and password. After restart of browser the changes can be recovered using the same authentication scheme.

Conclusions and future work

In this paper we proposed to apply the methodology of end-user tailoring in the accelerator control system environment. We considered as an example the design and implementation of Web-based monitoring applications for displaying beam conditions for 12GeV Proton Synchrotron at KEK.

In the future we would like to extend the prototype implementation by providing a rich selection of components and custom visualizers, usable in the accelerator control domain. Current implementation uses polling of CGI server that creates redundant traffic in the laboratory network. In the future version we consider replacing the polling with server push interface, which is based on the existing portable implementation of shared data channels [6].

References

1.
Mejuev, I., Abe, I., and Nakahara, K., Nuclear Instruments & Methods in Physics Research A 389, 38-41 (1997).

2.
Mejuev, I., Abe, I., and Nakahara K., “Object-Oriented Control System Development Using Smalltalk Language”, in International Conference on Accelerator and Large Experimental Physics Control Systems-95, ICALEPCS’95 Conference Proceedings, 1995, Chicago, USA, pp. 713-717.

3.
Floyd, C., Reisen, F.-M., and Schmidt, G., Lecture Notes in Computer Science 387, 48-64 (1989).

4.
Mejuev, I., Kumagai, A., Takahashi, M., Kadokura, E., Higo, T., and Takata, K., “Status of Control and Data Acquisition System for JLC X-Band High Field Experiment”; in 23rd Linear Accelerator Meeting in Japan, Conference Proceedings, 1998, Tsukuba, Japan, pp. 367-368.

5.
Higo, T., Dong, D., Fang, H., Nie, J., Gao, M., Kadokura, E., Mejuev, I., Sakai, H., and Takata, K., “High Field Experiment of 1.3m-Long X-Band Structure”, in The First Asian Particle Accelerator Conference, APAC’98 Conference Proceedings, 1998, KEK, Tsukuba, Japan, pp. 169-171.

6.
Mejuev, I., Abe, I., “Java Application for Creating a Shared Object Cash”, in International Conference on Accelerator and Large Experimental Physics Control Systems-97, ICALEPCS’97 Conference Proceedings, 1997, Beijing, China.

_1029136030.doc
[image: image1.png][image: image2.png]

InTouch

I/O server

Wonderware

Scout Outpost

 Java Clients

KEK backbone Ethernet

PLC Network

_1028537258.doc
[image: image1.png]

