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Abstract. Neural networks implemented in hardware can perform pattern recognition very quickly, and as such have
been used to advantage in the triggering systems of certain high energy physics experiments. Typically, time constants of
the order of a few microseconds are required. In this paper, we present a new system, MAHARADJA, for evaluating MLP
and RBF neural network paradigms in real time. The system is tested on a possible ATLAS muon triggering application
suggested by the Tel Aviv ATLAS group, consisting of a 4-8-8-4 MLP which must be evaluated in 10 microseconds. The
inputs to the net are dx/dz, x(z=0), dy/dz, and y(z=0), whereas the outputs give pt, tan(phi), sin(theta), and q, the charge.
With a 10 MHz clock, MAHARADJA calculates the result in 6.8 microseconds; at 20 MHz, which is readily attainable,
this would be reduced to only 3.4 microseconds. The system can also handle RBF networks with 3 different distance
metrics (Euclidean, Manhattan and Mahalanobis), and can simulate any MLP of 10 hidden layers or less. The electronic
implementation is with FPGA’s, which can be optimized for a specific neural network because the number of processing
elements can be modified.

INTRODUCTION

Neural networks implemented in hardware can per-
form pattern recognition very quickly, and as such have
been used to advantage in the triggering systems of cer-
tain high energy physics experiments. But the time con-
straint of such implementation is about few microseconds
which is a very difficult. In our laboratory we have de-
velopped,MAHARADJA, an electronic system to simulate
neural networks with real time simulation constraints. In
this paper, we present the evaluation of this system to a
possible ATLAS muon MLP triggering application sug-
gested by the Tel Aviv ATLAS group with a time con-
straint of 10 microseconds.

MAHARADJA

MAHARADJA is realized to simulate two kind of neu-
ral networks models:

• Radial Basis Function Neural Networks

• Multi-Layer Perceptrons

In this article we only discuss the Multi-Layer Percep-
trons implementation, the Radial Basis Function imple-
mentation is described in (1).

Our goal here is to know if our system can simulate
High Energy Physics MLP with very difficult constraint.
To investigate this question we benchmark MAHARADJA

with a real network defined by Tel Aviv ATLAS group.

SIMULATED NETWORK

The simulated network is used in the L2 trigger and
has 4 layers:

• a 4 neuron input layer and the inputs are dx/dz,
x(z=0), dy/dz, and y(z=0)

• two 8 neuron hidden layers

• a 4 neuron output layer containing pt, tan(phi),
sin(theta), and q, the charge

The required latency of this MLP is 10µs.

MAHARADJA DESCRIPTION

Our system is based on four principal components:

• A sequential processor: this processor can execute
sequential part of the algorithm and manage the sys-
tem.
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FIGURE 1. Architecture ofMAHARADJA

• A Unit to compute NEurons (UNE): this unit ac-
celerate the neuron computations to obtain very fast
simulation.

• An Input-Output unit: this unit can provide a high
input bandwidth to the UNE.

• A shared memory: this memory is shared between
the UNE and the processor. It contains the neural
network parameters, such as weights and size of lay-
ers.
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FIGURE 2. UNE unit organization

The UNE unit has two parts:

• four processors to compute post-synaptic potentials

• a component to compute the neuronal states

The processor of the UNE unit of MAHARADJA is or-
ganized in a SIMD 1 fashion. The interconnections are
made by a 16-bit broadcast bus connected to the INPUT-
OUTPUT unit.

A Scheduler, shown on Fig. 2, controls this unit by a
10-bit command bus.
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FIGURE 3. a processor of the UNE unit - A, B, S, T, U, V, W
and U are registers that synchronize computation. - AV is the
absolute value unit and ACCU the accumulation register.

Each processor of UNE unit compute one or more
post-synaptic potentials as shown in Fig. 3.

The architecture of a UNE processor has

• a 16-bit subtractor to compute the first step of a dis-
tance computation in Radial Basis Functions.

• a 16-bit multiplier to compute the second step of
Euclidean or Mahalanobis distance in Radial Basis
Function or to compute the first step of Multi-Layer
Perceptrons.

• a 16-bit absolute value unit to compute the second
step of the Manhattan distance in Radial Basis Func-
tions.

• a 32-bit adder to accumulate the result provided by
the multiplier or the absolute value unit. This is
the third step in computing distance in Radial Basis
Functions or in computing Multi-Layer Perceptrons.

With these 4 operators, it is possible to compute all the
post-synaptic potential for Radial Basis Functions with
Manhattan, Euclidean or Mahalanobis distances and for
Multi-Layer Perceptrons.

Behind the processor of the UNE unit there is a com-
ponent to compute the neuron states. This computation is
realized with a Lookup Table store in a memory.

1 Single Instruction stream Multiple Data stream



UNE CONTROL

The scheduler can place the UNE unit in a functional
mode. This mode can be:

• RBF with 3 differents metrics:

– Manhattan distance

– Euclidean distance

– Mahalanobis distance

• MLP

This gives 4 modes. When a mode is choosen, it is im-
possible to switch to another in a dynamic way. To realize
this, one must reinitialize the system.

The management of the UNE unit is realized by re-
quest. The beginning and the end of the computation is
made by control signals, a begin signal and an end signal.

MEMORY

With each processor of the UNE unit, there is 256-KB
of associated memory to store the simulated neural net-
work parameters such as post-synaptic weights or sizes
of layers.
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FIGURE 4. The input-output unit

This unit realizes the connection between MA-
HARADJA and the external world, for example the con-
verter of the analog signals in the calorimeter of a collider.
To obtain a high input bandwith we use a 3 FIFO struc-
ture, shown in Fig. 4. With such a structure the system
makes a pipeline beetween the computation in the UNE
unit and the acquisition of new data in the Input-Output
unit.

In Fig. 5 we can see how the Input-Unit calculation for
the HEP MLP is simulated. As we can see, the 2 fifo 2

(FIFO1 and FIFO2) are used to acquire new data from
the external world. When the FIFO1 is used to store new

2 first-in first-out

t1 2*t1 3*t1

FIFO1

FIFO2

FIFO3

R W R

R W R

W R W W R W W R W

R W R

R R R

t2
2*t2

3*t2
4*t2

t2
2*t2

3*t2
4*t2

t2
2*t2

3*t2
4*t2

Légende :

  t1  : Acquisition period of new data
  t2  : Compute layer period
  R  : Fifo reading
  W    : Fifo writing

(Acquisition Data 0)

W

(Acquisition Data 1)

W

(Acquisition Data 2)

W

(Acquisition Data 3)

W

FIGURE 5. Use of the 3 FIFOS

data, FIFO2 is used for the computation and vice-versa.
The third fifo (FIFO3) is used only for the computation
and to store intermediate and final results.

IMPLEMENTATION

MAHARADJA is implemented with Altera APEX20K
FPGA. We can with such an implementation modify
some parameters like the number of processors to accel-
erate neural network computation.

TIMING ANALYSIS

We have carried out a time analysis of the MA-
HARADJA system, based on a prediction and evaluation
methodology that we developed in our laboratory (2, 3).
We first extract an analytical model of the evaluated sys-
tem. This model is shown in table 1.

The variables in Table 1 are:

• nbp : Number of post-synaptic potentials (Terminal
layer of the connection)

• nbe : Number of neurons (Initial layer of the con-
nection)

• N : Neural Nework layer number

Now we can use the analytical model to predict the
simulation time of the HEP neural network. This time
is given in Table 2. Note that MAHARADJA can simulate
this MLP with a simulation 1.5 times less than the desired
10µs if we use a 10 MHz clock and 4 processors in UNE
unit, and it takes 6.5 times less if we use a 20 MHz clock
and 8 processors in UNE unit.



Table 1. Time analysis of MAHARADJA

Multi Layer Perceptrons
∑N

i=1d
nbei

4 e� (nbpi +2)+nbei +1

Manhattan Distancel
nbp

4

m
� (nbe+4)+d nbes

4 e� (nbps +2)+nbes +1

Euclidean Distancel
nbp

4

m
� (nbe+4)+d nbes

4 e� (nbps +2)+nbes +1

Mahalanobis Distancel
nbp

4

m
� (nbe2 +6�nbe+2)+d nbes

4 e� (nbps +2)+nbes +1

Table 2. Comparison of Simulation Time for an MLP
Predicted by the Analytical Model.

System Frequence (MHz) Time (µs)

MAHARADJA 4 UNE 10 6.5

MAHARADJA 8 UNE 10 3.2

MAHARADJA 8 UNE 20 1.6

CONCLUSION

In this article we propose an electronic system , MA-
HARADJA, which can calculate the result of a HEP MLP
in 6.5 microseconds at 10 MHz, or at 20 MHz, 3.4 mi-
croseconds. The system can also handle RBF networks
with 3 different distance metrics (Euclidean, Manhattan
and Mahalanobis), and can simulate any MLP of 10 hid-
den layers or less. The electronic implementation is with
FPGA’s, which can be optimized for a specific neural net-
work because the number of processing elements can be
modified.
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